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Weighted Estimation and Tracking for Branching
Processes with Immigration

Bernard Bercu

Abstract—For branching processes with immigration, we pro-
pose a new approach which allows us to consistently estimate the
means , , and the variances 2, 2 of the offspring and im-
migration distributions, respectively. Generally, statistical results
for branching processes are established under the well-known tri-
chotomy 1, = 1, and 1. For example, no pa-
rameters of the immigration distribution can be consistently esti-
mated if 1. The purpose of this paper is to obtain, through
the introduction of a suitable adaptive control, strongly consistent
estimators for all the parameters , , 2, and 2 without any
restriction on the range of . Central limit theorems and laws of
iterated logarithm are also provided.

Index Terms—Adaptive control, branching processes, central
limit theorem, law of iterated logarithm, least-squares estimation.

I. INTRODUCTION

T HE purpose of this paper is to expand the adaptive
control theory to the branching processes framework.

We shall investigate the statistical properties of the controlled
Bienaymé–Galton–Watson process with immigration (BGWI)
given, for all , by

where and are two independent sequences of in-
dependednt identically distributed (i.i.d.) nonnegative, integer-
valued random variables. The initial variables and are in-
teger-valued square-integrable random variables which are in-
dependent of and . The distribution of , with
finite mean and positive variance , is commonly called the
offspring distribution. The distribution of , with finite mean

and positive variance , is known as the immigration distri-
bution. We are interested in the estimation of all the parameters

, , , and .
For the classical BGWI process without control, Heyde and

Seneta [18], [19] were the first to provide estimation results for
and without imposing restrictive assumptions on and

. However, they do not solve the problem of how to estimate
and if we do not know whether , , or .

More recently, Wei and Winnicki [28], [29] achieved consis-
tency results for and without any restriction on the range
of . However, they proved that there is no consistent estimator
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for and if . Furthermore, in the case where ,
Pakes [24] discovered the dichotomy and .
The process is null recurrent if , whereas it is
transient if . In the case where and ,
Winnicki [31] established that the only parameters which may
have consistent estimators are the first four moments of the off-
spring distribution and the meanof the immigration. Conse-
quently, there is no consistent estimator forif and

.
The purpose of this paper is to establish estimation results for
, , , and , without imposing restrictive assumptions on

the parameters, by introducing a suitable adaptive control in the
classical BGWI process. This adaptive control regulates
the dynamic of the process . On the one hand, gen-
erates offsprings if there is not enough “energy” in the process.
On the other hand, eliminates them if there is too much
“energy” in the process. By the same token, also forces

to track step by step a given reference trajectory . We
shall denote by with with

the natural filtration of the model.
This paper is organized as follows. Section II is devoted to

the estimation of the offspring parameters for the BGW process
without immigration. We shall show the strong consistency of
weighted least squares estimators ofand . Moreover, for
each estimator, a central limit theorem (CLT) and a law of iter-
ated logarithm (LIL) are also provided. In Section III, we estab-
lish similar estimation results for all parameters, , and
in the BGWI framework. A short conclusion is given in Section
IV where we mention some possible practical applications. All
technical proofs are postponed in the Appendexes. We refer the
reader to Asmussen and Hering [1], Athreya and Ney [2], and
Guttorp [16] for basic properties of branching processes, and
also to Caines [7], Chen and Guo [8], and Duflo [12] for the
main results of adaptive control theory.

II. BGW RESULTS

We consider first the BGW process without immigration by
taking identically null so that

(II.1)

In all the sequels, we assume that is a sequence of integer-
valued random variables adapted tosuch that, whatever the
value of , . We can rewrite (II.1) as the
autoregressive form

(II.2)
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where . Then, is a martingale difference
sequence adapted tosuch that . In order
to estimate , we propose to make use of the weighted least
squares (WLS) estimator that minimizes the quadratic cri-
terion

Consequently, we obviously have

where (II.3)

In addition, we also estimate the varianceby

(II.4)

We shall now specify the crucial choice of the adaptive control
. The goal of adaptive tracking is to find a sequence

which regulates the dynamic of the process by forcing
to follow a given reference trajectory . We assume

that is a sequence of nonnegative integer-valued random
variables such that is measurable. We have, from (II.2),

where . If the parameter was known, we
would choose such that be as close as possible to zero,
i.e., , where denotes the projection
operator on . Therefore, we propose to make use of the adap-
tive tracking control

if
otherwise.

(II.5)

One can see in (II.5) how regulates the process . On
the one hand, generates offsprings if there is not enough
“energy” in the process. On the other hand, eliminates
them if there is too much “energy” in the process. Via this adap-
tive control, the system is always “persistently excited,” i.e., for
all , . The performance of the tracking can be
evaluated by the average weighted cost sequencegiven by

The adaptive tracking is said to be optimal if converges a.s.
to , whereas it is globally stable if a.s. The
following asymptotic properties for were recently estab-
lished in [6], while those concerning are new.

Theorem 1: Assume that has a finite moment of order
and that converges a.s. to an integer . If we

use the adaptive control given by (II.5), then is a strongly
consistent estimator of

a.s. (II.6)

In addition, if , we have the CLT

(II.7)

and the LIL

a.s.

(II.8)

In particular,

a.s. (II.9)

Finally, we have the quadratic strong law

a.s. (II.10)

Theorem 2: Assume that has a finite moment of order
and that converges a.s. to an integer . If we

use the adaptive control given by (II.5), then is a strongly
consistent estimator of

a.s. (II.11)

In addition, assume that has a finite moment of order .
Denote by the fourth order centered moment of , and
set . Then, we have the CLT

(II.12)

and the LIL

a.s.

(II.13)

In particular,

a.s. (II.14)

Finally, we have the quadratic strong law

a.s. (II.15)

Remark 1: If has only a finite moment of order 2,
then (II.6) and (II.11) hold replacing the convergence rates

by for all . Moreover,
concerning the estimation of , similar results than those
obtained for were proven in [6] for
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and

Finally, the tracking is globally stable and residually optimal
since converges a.s. to , where ,
which differs from zero except for .

Proof: Theorem 1is already established in [6] so that we
only have to proveTheorem 2. For all , we have from
(II.2), . Consequently,

Moreover, it follows from (II.3) that .
Therefore,

(II.16)

It was shown in [6] that both and converge a.s. to
. Then, we directly deduce (II.11) from

(II.16) and (II.6). Furthermore, it follows from the martingale
CLT (see, e.g.,[17, Cor. 3.1]) that

(II.17)

where . Moreover, we also obtain
from the martingale LIL (see [26, Th. 3]) that

a.s.

(II.18)

Then, (II.11) and (II.17) imply (II.12), whereas (II.13) is given
by (II.11) and (II.18). Finally, it was shown in [6] that

a.s. (II.19)

which directly implies (II.15) completing theProofof Theorem
2.

III. BGWI RESULTS

We shall now focus our attention on the more attractive BGWI
process

(III.1)

As in the previous section, we assume that is a sequence of
integer-valued random variables adapted tosuch that, what-
ever the value of , . We can rewrite (III.1)
as the autoregressive form

(III.2)

where . Then, is a martingale difference
sequence adapted tosuch that

(III.3)

as . Therefore, we have the stochastic regression equa-
tion

(III.4)

where and . In order to estimate the
vector of means, we propose to make use of the WLS estimator
that minimizes the quadratic criterion

The choice of the weighted sequence is crucial. We pro-
pose to take

with (III.5)

where . Then, we clearly have

(III.6)

where is a deterministic, symmetric and positive-definite ma-
trix. It is added to the matrix in order to avoid useless in-
vertibility assumptions. Similar WLS algorithms were first in-
troduced by Bercu and Duflo [3]. In the ARMAX framework,
it was shown [4], [5] that the WLS performs as well as the ex-
tended least squares (ELS) for parameter estimation. In addi-
tion, the WLS behaves better than the ELS for the tracking op-
timality. Finally, Guo [15] has recently proved the almost sure
self-convergence of the WLS algorithm. This property is a key
point of our approach. In order to estimate the vector of vari-
ances , we use the same ideas developed by Win-
nicki [31] (see also [20], [32]). First, we assume thatis known.
Then, we can set

(III.7)

and we can study (III.7) as a stochastic regression equation with
unknown parameter. is clearly a martingale difference
sequence. Moreover, if and are the fourth order centered
moments of and respectively, we find that

Hence, as , we deduce that
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Therefore, we are led to introduce the weighted sequence
such that and we propose to make use of the WLS
estimator

(III.8)

where is a deterministic, symmetric and positive definite ma-
trix. Finally, as the vector is unknown, we propose to choose

(III.9)

where . Furthermore, proceeding as in Section
II, we propose to make use of the adaptive tracking control

if
otherwise

(III.10)

where .
Lemma 1: Assume that converges a.s. to an integer

. If we use the adaptive control given by (III.10), then there
exists a finite random variable such that a.s.

(III.11)

Remark 2: First, we want to point out that we have only
required moments of order two for and . Next, as

, is not a consistent estimator of. In fact, it is
possible to show the sharper result

a.s.

Therefore,

a.s.

which implies that converges to a.s.
Remark 3: Assume that both and possess finite

moments of order . Then, we have, via Chow’s Lemma (see
e.g. [12, Prop. 1.3.19]), that

a.s.

Moreover, it is shown in theProof of Lemma 1that con-
verges a.s. to. Hence, (III.2) immediately implies that

a.s.

and the tracking is globally stable.
In order to obtain the strong consistency for , we are led

to introduce an exogenous excitation on the adaptive tracking
control. This approach is frequently used in adaptive tracking
whenever there is a lack of energy which does not allow us to
properly estimate the parameters (see e.g., [4], [5], [13], [14],

[22], and [23]). The effect of this excitation will be to make the
limit matrix in (III.11) invertible. Consequently, we propose
to make use of the continually disturbed adaptive tracking con-
trol

(III.12)

where is an exogenous bounded sequence of i.i.d. positive
integer-valued random variables, adapted to. In addition, we
assume that is independent of , , and of the
initial variables and . We denote by the nondegenerate
distribution of .

Lemma 2: Assume that converges a.s. to an integer
. If we use the adaptive control given by (III.12), then, for

, we have a.s.

(III.13)

Remark 4: The matrix is invertible since, by Jensen’s in-
equality and nondegeneracy of,

. Moreover, it is shown in theProof of Lemma
2 that converges a.s. to . Hence, as before,
(III.2) immediately implies that the tracking is globally stable.

Theorem 3: Assume that converges a.s. to an integer
. If we use the adaptive control given by (III.12), then

is a strongly consistent estimator of

a.s. (III.14)

In addition, assume that both and possess finite mo-
ments of order . Then, we have the CLT

(III.15)

where

Moreover, for any vector , we have the LIL

a.s. (III.16)

In particular, if and are
the minimum and the maximum eigenvalues of re-
spectively, then we have

a.s.

Lemma 3: Assume that converges a.s. to an integer
and that both and possess finite moments of order
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4. If we use the adaptive control given by (III.12), then we have
a.s.

(III.17)

Remark 5: The matrix is also invertible since by the
Cauchy–Schwarz inequality and the nondegeneracy of,

.
Theorem 4: Assume that converges a.s. to an integer

and that both and possess finite moments of
order 4. If we use the adaptive control given by (III.12), then
is a strongly consistent estimator of

a.s. (III.18)

In addition, assume that both and possess finite mo-
ments of order . Then, we have the CLT

(III.19)

where

and . Moreover,
for any vector , we have the LIL

a.s. (III.20)

In particular,

a.s.

IV. CONCLUSION

In this paper, we expanded the adaptive control theory to the
branching processes framework. For branching processes with
immigration, we have shown that, thanks to the introduction of
a suitable adaptive control, it was possible to consistently esti-
mate all the parameters of interest, , , and without any
restriction on the range of . BGWI processes appear in a wide
range of applications going from population biology and statis-
tical physics to traffic flow and computer sciences. We refer the
reader to Heyde and Seneta [18] for a short historical discus-
sion and to [10], [16], and [30] for more recent contributions.

It is reasonable to think that some practical applications of our
approach are possible, such as the following:

• in statistical physics with the control of the total number
of particles contained in a small volume;

• in computer sciences with the electronic management of
documents in Web environment.

The investigation of one of these two applications can be the
purpose of a new development in the area of tracking control for
BGWI processes.

APPENDIX A
WEIGHTED LAW OF LARGE NUMBERS

We shall often make use of the weighted law of large numbers
(WLLN) for martingales established by Duflo and Bercu [3],
[12]. We also mention the important self-convergence property
associated with this weighted law, which was recently proven by
Guo [15]. Let be a sequence of random variables, adapted
to , such that a.s.

and

Let be a sequence of random vectors of dimension
such that is measurable. For , set

(A.1)

where is a deterministic, symmetric and positive definite ma-
trix. Denote by and the minimum and the max-
imum eigenvalues of , respectively.

Theorem 5: Assume that is an admissible weighted se-
quence, i.e. is a decreasing bounded sequence such that
is measurable and almost surely

with (A.2)

Then, if , the sequence converges a.s. to a
finite random vector . In addition, on the set

converges a.s. to zero with the almost sure rate of conver-
gence

a.s. (A.3)

Remark 6: We have the very appropriate identity
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Consequently, if with , then
(A.2) is always satisfied as

APPENDIX B
PROOF OFLEMMAS 1 AND 2

From relations (III.4) and (III.6)

where

(B.1)

and . We want to apply the WLLN to

and

First, we have already seen that . In ad-
dition, we have to check that (A.2) is satisfied. In fact, it is easy
to see that and so that

which clearly implies (A.2) via Re-
mark 6. It follows from the first part ofTheorem 5that there
exists a finite random vectorsuch that converges a.s. to.
Set where . On
the one hand, for the adaptive tracking control (III.10) situation
without excitation, the sequences and both con-
verge a.s. to the finite random variable where

and . The rest of the proof
follows essentially the same lines as in [5, App. B]. We can use
the Abel relation

(B.2)

with

(B.3)

We have already shown that a.s.

(B.4)

In addition, as is almost surely equivalent to

a.s.

Therefore, by use of (B.2), (B.4), and Toeplitz’s Lemma (see,
e.g., [12, p. 54]), we obtain the convergence (III.11) ofLemma 1.
On the other hand, for the adaptive tracking control (III.12) sit-
uation with excitation, we have already seen thatconverges

a.s. to a finite random variable. First, assume that is a de-
terministic constant. Then, converges a.s. to
and we also have a.s.

(B.5)

By Jensen’s inequality, the matrix is invertible so that
a.s. Next, if is a random variable, has neces-

sarily a discrete sample space. In addition, for allgreater than
a finite random integer , and the exogenous excita-
tion is independent of . Thus, as Jensen’s inequality
holds for conditional expectation, we also obtain via a partition
argument that a.s. Therefore, as the weighted
sequence is decreasing, it results that so that

a.s. Consequently, as is almost surely
equivalent to , we find that goes a.s. to in-
finity and we can deduce fromTheorem 5that is a strongly
consistent estimator of. Finally, the value of is the determin-
istic constant which achieves the proof of
the convergence (III.13) ofLemma 2.

APPENDIX C
PROOF OFTHEOREM 3

We can immediately deduce (III.14) from relation (A.3) as

a.s. (C.1)

and a.s. For the CLT, we use the same ap-
proach as Klimko and Nelson [21] or Wei and Winnicki [29] for
BGWI processes without control. From (B.1), we have

where

and

In order to establish (III.15), we only have to prove that

since converges to a.s. By the Cramer-Wold Theorem
(see, e.g., [17, p. 175]), we have to show that for any
with ,

(C.2)

By (III.3), is a martingale with increasing process
such that

Exactly as in Appendix B, we can prove that a.s.

(C.3)
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Moreover, assume that and both possess finite mo-
ments of order with . From (III.2) and the Rosen-
thal inequality (see e.g. [25, Th. 2.12]), we have for all ,

. Therefore, we have a.s.

(C.4)

Relations (C.3) and (C.4) show that the conditions of the mar-
tingale CLT are satisfied (see e.g. [17, Cor. 3.1]) which achieves
the proof of (C.2). Finally, via the martingale LIL (see e.g. [26,
Th. 3]), we have for any with

a.s. (C.5)

since is a.s. equivalent to . As
, (III.16) follows from Lemma 2together with (C.5) which

completes theProofof Theorem 3.

APPENDIX D
PROOF OFTHEOREM 4

From relations (III.7) and (III.8), we have

where (D.1)

and . It is possible to apply the WLLN to

and

First, we have already seen that .
In addition, since , condition (A.2)
is satisfied. Therefore, we prove the convergence (III.17) of
Lemma 3following exactly the same lines as in Appendix B.
Thus, we deduce from (A.3) that

a.s. (D.2)

On the other hand, we have from (III.2), (III.8), and (III.9)

(D.3)

Consequently, using again the WLLN for the martingale in
(D.3), we find that

a.s.

Hence, we obtain from the LIL (III.16) together with (III.17)
that

a.s. (D.4)

Therefore, (III.18) is directly given by (D.2) and (D.4). For the
CLT, using the same approach as in Appendix C, we find that

(D.5)

Then, (III.19) immediately follows from (D.4) and (D.5). Fi-
nally, for any with , we also have

a.s. (D.6)

with . Consequently, we obtain (III.20) via
Lemma 3together with (D.4) and (D.6) which completes the
Proofof Theorem 4.
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