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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS

B. BERCU

Abstract. For complex multivariate ARMAX models, the author studies the weighted least squares algorithm
which offers, by the choice of suitable weightings, the advantages of both the extended least squares and the stochastic
gradient algorithms. Concerning adaptive tracking problems, the strong consistency of the estimator and control
optimality are both ensured. Almost sure rates of convergence are also provided.

Rsum. Pour les modules ARMAX vectoriels complexes, on 6tudie 1’ algorithme des moindres carrds ponddr6s
qui conjugue, par le choix de pond6rations convenables, h la fois les avantages des algorithmes des moindres carr6s
g6n6ralis6s et du gradient. Concernant les problbmes de poursuite adaptative, on assure la consistance de l’estimateur
et l’optimalit6 du contr61e. On pr6cise 6galement les vitesses de convergence presque sfire.
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1. Introduction. In the study of recursive identification and adaptive tracking for
ARMAX linear systems, the major goal is to find a stochastic algorithm that ensures both
strong consistency of the estimator and control optimality. On one hand, if we focus our
attention on the strong consistency, we choose the extended least squares (ELS) algorithm
[15], [19], [22], [23], [24]. On the other hand, if we are interested in adaptive tracking, we
should use the stochastic gradient (SG) algorithm [8], [18]. Therefore, a natural question
is: Can we find a stochastic algorithm that combines both advantages of the ELS for strong
consistency and of the SG for adaptive tracking? A positive answer was recently given by
Bercu and Duflo [4] when they proposed a new weighted least squares (WLS) algorithm. In
this paper we complete their work, giving a solution to the twenty-year-old adaptive tracking
problem proposed by Astr6m and Wittenmark for ARMAX models.

The paper is organized as follows. In 2, we describe the WLS algorithm. The main
difference from the ELS algorithm is the introduction of a random weighting sequence a

(an). Section 3 is devoted to the crucial choice of a (an). The main results of the paper
are given in 4. We can see that the WLS algorithm equals the performance of the ELS for
the strong consistency and matches the best result of the SG for the adaptive tracking. More
precisely, the relation (24) is similar to the one obtained by Lai and Wei [24], [25] or Chen
and Guo 12] for the ELS estimator. Moreover, concerning the prediction errors sequence, the
relation (26) is exactly the same as the one proved by Goodwin, Ramadge, and Caines [18]
for the SG algorithm. Finally, in 5 and 6, we solve, in a simple way, the adaptive tracking
problem. We prove both strong consistency of the WLS estimator and control optimality. We
also provide almost sure rates of convergence. Section 7 is devoted to a survey on earlier
related works on adaptive tracking. Comparing our work with previous similar results, we
show how the WLS algorithm is well suited for adaptive tracking problems. A short conclusion
is given in 8. All technical proofs are collected in the Appendices.

Notations. In the following sections, for any matrix A, A denotes the transpose of A, A
represents the Hermitian adjoint of A and we set IIA tr(A* A). Moreover, if A is a square
matrix, tr(A) denotes the trace of A, det(A) the determinant of A, and Amin(A), Amax(A) the
minimum and the maximum eigenvalues of A, respectively. In addition, if A and B are two
positive definite Hermitian matrices, then A _< B if B A is positive definite. Finally, for
any positive integer d, Ia is the identity matrix of order d.
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90 B. BERCU

2. Weighted estimation. Let
(.T’n)n_>0, where f’n is the o--algebra generated by events occurring up to time n. We consider
the following complex multivariate ARMAX model of order (p, q, r)"

(1) A(R)Yn B(R)Un +
where Y, U, and are the dl-dimensional output, d2-dimensional input, and all-dimensional
driven noise, respectively. Set for the shift-back operator R,

(2) A(R) Id, AIR App,

(3) B(R) B1R +... + BqRq,

(4) C(R) Idl + C1R +’" + CrRr,
where A, Bj, Ck are unknown matrices. Assume that the control U (U) and the noise

() are adapted to F and that is a martingale difference sequence with

(5) sup E[llen+ IZl] < o-2 a.s.,

where cr2 is deterministic. The initial state tiff0 (tYoP tU, tc) is U0 measurable and,
for >_ 0,

(6) (ty, Uq, ),

where tY
Let 0n be an estimator of 0 where

(7) *0 (A1,...,Ap, B1,...,Bq,C,...,C).

The noise is predicted by the a posteriori error g with g 0 and, for n _> 0,

(8)

where

(9) tn (tyyn, t^’en ).
Let a (a) be a sequence of random variables adapted to F, positive, nonincreasing,

and 1. a (a) is called a weighting sequence. We propose, in order to estimate 0, the
WLS estimator 0 introduced by Bercu and Duflo [4] and given, for n 0, by

(10) On+ On + anSgl(a)n*(Yn+ *n),
where the initial value 0 is arbitrarily chosen and, for n O,

(11) n(a) akk *k +
k=O

with any positive definite Hermitian and deterministic matrix S. We also write, for such a
matrix Q,

(12) Qn(a) akk*q + Q.
k=O
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 91

The inverses ofthe matrices Sn (a) and Q, (a) are recursively generated by the matrix inversion
formula of Riccati. Denote by s, (a) and q, (a) the traces of S, (a) and Qn (a), respectively.
We also make use of

(13)

where s tr(S), and of the prediction errors sequence 7r (Trn) defined by

(14)

3. Admissibility. Consider a weighting sequence a (an) and set, for n _> 0,

(15) fn(a)
r--0

a is said to be admissible ifA is integrable. Let F be the family ofcontinuous and nonincreasing
functions f from R+ to R+ such that zf(z) converges to 0 as z goes to infinity and

(16) f(x)dx <

for any constant c > 0. We have the classical inequality

(17) fn(a) <_ inf{1, log(det Sn(a))- log(det S,_ (a))}.

Using (17), Bercu and Duflo [4] have shown that a weighting sequence a (an) such that
an f(n) or a, f(log s,) with f E F is admissible. More precisely, they have proved
that A is always almost surely bounded.

Throughout the following, we always assume that the weighting sequence a is admissible.
Remark. It is important to see that theWLS algorithm does not include the ELS as a special

case since the weighting sequence with general constant term equal to is not admissible.

4. Strong consistency. We make use ofthe following traditional assumption ofpassivity:
(A1) C-1 " Idl is strictly positive real.
THEOREM 1. For the model and the WLS algorithm (1) to (14), assume that (A) is

satisfied. Then we have

/sup Ils/2(o;)(0n+l 0)112/ % -+-oo,(18) E
/>_o

(19) E ICnll*(On+l--O)nll21n=O
(20)

(21)
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92 B. BERCU

(22)

(23)

Proof The proof is given in Appendix A.
COROLLARY 1. If (A1) holds, the WLS estimator given by (10) is strongly consistent on

and, on I, we have

I- {oo/minSn()- nt-CX:3}

(24) t)+l 0112 O({/minSn(6)} -1) a.s.

Remark. As S(c) > S, the WLS estimator is always almost surely bounded. By (24),
we can conclude that the WLS algorithm behaves as well as the ELS for ARMAX parameter
estimation [12], [24], [25].

COROLLARY 2. If (A1) holds, the prediction errors sequence satisfies

(25) (+ 11,I)ll2)-lllrll 2 <

More particularly, if, for r >_ O, s <_ can with c deterministic > O, then

Finally, we also have

(27) E (;t-l - /minSn_l((;t) 117l’nll 2 < -+-0(3.

n=0

Remark. By (26), we can conclude that the WLS algorithm behaves as well as the SG
for adaptive tracking [8], [18].

Proof. 7rn *On *On, so we can rewrite 7r -n+l + *(0n+l 0n)(I) where

7-n+l *0n *0n+l(I). Then, by use of (19) together with (21),

(28)

Hence, (25) and (27) immediately follow from (20) and (28). Moreover, if s <_ ca with c

deterministic > 0, (20) and (28) imply (26). []

COROLLARY 3. Assume that the driven noise c satisfies the strong law of large numbers
(LN) with, for n >_ O,

(29)

where r is a deterministic covariance matrix. To estimate F, we propose the two empirical
estimators

" n ; ’/=1 (Y/- *0/--1(I)/--1) (]//- *0/--1(I)/--1)

Suppose that (A1) is satisfied and that s- 0(an). Then, on the set {sn 0(n) and

sn --+ +oc}, and [’n areboth strongly consistent estimators ofF.
Proof. The proof is obvious using (21) and (26) with Kronecker’s lemma. []
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 93

5. Adaptive tracking. We still consider the model and the WLS algorithm (1) to (14).
The goal of adaptive tracking is to find a control sequence U (Un) that forces the output
Y (Yn) to follow a given reference trajectory y (yn). We first use the traditional adaptive
tracking control (ATC) introduced by Astr6m and Wittenmark such that, for r _> 0,

(30) Yn+l *Onn.
It is well known that the ATC is almost surely defined if the following assumption is

satisfied:
(A) For n 0, the U conditional distribution of e+ is absolutely continuous with

respect to the Lebesgue measure.
Remark. If (A2) is satisfied, Caines [8] has shown how to solve the zero divisor problem

for the ATC. We will see in the next section how to avoid this assumption.
Throughout the following, we assume that the driven noise e has constant conditional

covariance matrix F given by (29). We also make use of the two classical assumptions
about

(N1) has finite conditional moment of order >2;
(N2) e is independent and identically distributed with mean 0 and covariance matrix F.

Therefore, if (N1) or (N2) are fulfilled, e satisfies LN, i.e., if

(31) F--
=1

F converges to F almost surely. Finally, we need the following usual assumption of causality:
(A3) d2 dl and the matrix B is of full rank d2. Moreover, if B+ denotes the left inverse

of B1 and if D() B+-1B() for the shift-back operator , then D is causal.
Throughout this section, we use a similar approach as that of Bercu and Duflo [4] in the

ARX framework. Let C (C) be the average cost matrix sequence defined by

(32) C (y Y)* (y Y)
k=l

The ATC is said to be optimal ifC converges almost surely to F. If we use the ATC, we have
from (30)

(33) Y+ +1 + e+l.

Then, we can easily prove that

k__l
2 a.s.

Therefore, in order to show the ATC optimality, we only have to prove that the prediction
eors sequence satisfies

(35) 11112- o()a.s.
k=l

THEOREM 2. For the model and the WLS algorithm (1) to (14), assume that (A1)-(A3)
and (N1) or (Ne) are satisfied. For the tracking trajecto y (y), suppose that, for

O, y+ is measurable with respect to and

(36) I1112 o() a,s.

k=l
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94 B. BERCU

Ifan f(log Sn) with f E F and if s- O(an), then the ATC is optimal. Moreover, we
have

(37) -lllYn y enll 2 < -+-oe a.s.

Finally, n and n are both strongly consistent estimators ofF.
Remark. For the SG algorithm, the ATC optimality was established by Goodwin, Ra-

madge, and Caines 18]. Such a theorem was never proven for the ELS algorithm.
Proof. The proof is given in Appendix B.
We now give a useful excitation transfer (ET) lemma similar to the one established by

Lai and Wei [25]. We begin by stating the following assumption of ieducibility which uses
the same notation as (A3):

(A4) The matrix B+Bq is regular and the polynomials of matrices B+A, B+C and D
are left coprime.

EXCITATION TRANSFER LEMMA. Suppose that (A3) and (A4) are satisfied. Then we can

find a constant M > 0 such that, for n s,

where tHn_ p+s+Y and s d2(q 1).
Pro@ A proof can be found in Lai and Wei [25] or Duflo [17].
THEOREM 3. For the model and WLS algorithm (1) to (14), assume that (A)-(A4) and

(N1) or (N2) are satisfied. Assume that the covariance matrix F is regular For the tracking
trajecto y (y), suppose that Yn+l is n--p-s U__-measurable with
and

(39) ilyll 2 o() a.s.
k=l

Moreover, suppose that y is exciting with order p + s + 1, i.e.,

(40) liminfmin (1
_

p+s+l,_p+s+l)n
yk yk > 0 a.s.

k=p+s

Ifa f(log s) with f F and ifs O(a), then the ATC is optimal

(41) I1112 o(), f(a) o(1) a.s.,

(42) I[Cn rll- o
nf(log n)

a.s.,

(43) Z f(log )11 112 < +
n--1

a.So

Moreover, the WLS estimator On converges almost surely to 0 and we obtain

( )(44) IlCn+l 0112 O
nf(log n)

a.s.
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 95

Finally, n andn are both strongly consistent estimators of ’ and wefind relations similar
to (42) with n or n instead of

Proof The proof is given in Appendix C.
Remark. We can prove the ATC optimality and the strong consistency with a condition less

restrictive than (40) for the tracking trajectory. More precisely, let A (An) be a deterministic
positive sequence, increasing to infinity, such that (An) has the same behavior as (An_ 1) and
An O(n). Assume that is A-exciting with order p + s + 1, i.e.,

(45) lim inf/min -n Z p+s+l,yp+s+lYk k > 0 a.s.
k=p+s

2Then, if A O(an), the ATC is optimal and the WLS estimator is strongly consistent with

(46) II/l 0112 o
Anf(log n)

a.s.

We next consider the continually disturbed control (CDC) introduced by Caines [6], [8] such
that, for n > 0,

(47) Yn-t-1 -- r+lwhere is a dl-dimensional exogenous noise, adapted to F, with mean 0 and covariance matrix
A. The CDC is said to be residually optimal if C converges almost surely to 1 + A.

THEOREM 4. For the model and WLS algorithm (1) to (14), take the same assumptions as
in Theorem 3 except condition (40)for the tracking trajectory 1. Moreover,for the exogenous
noise , assume that the LN is satisfied with A regular. In addition, assume that is independent
ofe, of], and ofthe initial state o. Ifan f(log sn) with f E F and ifs- O(a2), then
the CDC excited by is residually optimal

(48) I1 2 o(n), f(a) o(1) a.s.,

(49) Z f(log  )IIY nll 2 < -+-o a.s.
n--1

Moreover, the WLS estimator On converges almost surely to 0 and we obtain

( )(50) II0 +l 0112 o
r f(log

a.s.

Proof. The proof is similar to that of Theorem 3.

6. Modified adaptive tracking. We now use a similar approach as that of Guo and Chen
[19], [15] in the ELS framework. Assume that (A1) and (A3) are satisfied. Without assumption
(A2), to avoid the zero divisor problem with the ATC, we propose a modified WLS estimator.
Throughout the following, the major restriction is that the noise is supposed to satisfy (N1).
All the results of this section are also true, without modification, if we assume that (A2) is
satisfied.

Let/ be the matrix component of n that estimates/1. Pn and Qn are the orthogonal
matrices associated with the singular value decomposition of/. The columns of P are
eigenvectors of/1,/1 and the columns ofQ are eigenvectors of*//l [20]. We set

(51)
if/min(* "1 "1 > 0,

otherwise,
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96 B. BERCU

for any positive, deterministic and summable sequence u (un). By (51),/)1 is clearly of
full rank d2. Denote by n the modified WLS estimator of 0 where/)l is replaced by/)l in

0n. It immediately follows from (51) that

(52) 10n 112 , a.s.

Hence, since un o(1), the WLS algorithm is not modified for parameter estimation. We
first consider the modified ATC such that, for n >_ 0,

(53) Yn+l *0n(I)n.

We clearly have from (53)

(54) Yn+ Yn+ #n --[- n+

where

(55)

Therefore, the modified ATC is optimal if

(56) Z I1# 2 o(D a.s

THEOREM 5. For the model and the WLS algorithm (1) to (14), assume that (Al), (A3),
and (N) are satisfied. For a positive, nonincreasing and deterministic sequence c (cn)
such that Cn O(n), assume that we have ,112 o(o). For the tracking trajectory

Y (Yn), suppose that, for n >_ 0, Yn+ is .Un-measurable with Ily,ll 2 o(o) and

(57) Z I111 o() a.s.
k=l

If an f(log sn) with f E F and if S- O(an) then the modified ATC is optimal.
Moreover, consider the positive random sequence v (Vn) such that vn Cn + a- 1. Then
we also have

(5s) 112 O(Vn+l) a.s.,

(59)

(60) Z --tlY Yn
2 < +oc a.s.

n=l vn

Finally, n and are both strongly consistent estimators of[’ and wefind relations similar
to (59) with n or instead ofC.

Proof. The proof is given in Appendix D.
Concerning adaptive tracking, we now give the last but most important theorem of this

paper. It ensures both strong consistency for the WLS estimator and modified continually
disturbed control (CDC) optimality. We recall here that the following theorem is also true,
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 97

without modification, if we assume that (A2) is satisfied. Before stating it, we assume in (51)
that the sequence (nun) is summable.

Consider a deterministic positive sequence , (,n), increasing to infinity, such that, for
n _> 1, ,n /n--I 1, (,) has the same behavior as (/n-1) and ,Xn O(n). Let be a

dl-dimensional exogenous noise adapted to F with mean 0 and covariance matrix A. Set, for
n _> 1, Xn V/, ,-ln. We use the CDC introduced by Bercu and Dutto [4] such that,
forn >_ 0,

(61)

It follows immediately from (61) that

(62) Yn+l Yn+l Xn+l #n + n+l.

THEOREM 6. Forthe model and the WLS algorithm (1) to (14), assume that (A1), (A3),
(A4), and (N1) are satisfied and that [’ is regular. For a positive, nonincreasing and de-
terministic sequence ct (ctn) such that cn O(n), assume that I1112 o(). For
the tracking trajectory y (Yn), suppose that Yn+l is U-p-s N ,n__s-measurable with
Ilynll 2 O(n)and

(63) Z IIll 2 o(n) a.s.

Moreover, assume that the exogenous noise satisfies (N1) with A regular. In addition,
suppose that is independent of , of the initial state o, and of the tracking trajectory(
y, and that 11112 O(c). Consider the positive random sequence v (v) such that

vn OZn + a 1. Assume that vn o(,n) and ,-1 O(a2). If an f(log sn) with f E F
and if s- O(a2n ), then

(64) I1112 o(,Xn), fn(a) o(1) a.s.,

(65) Z f(lg n)IIYn Yn X en 2 < +oc a.s.,
n=l

(66) ,k----l l(Yk= yk )*(Y y ) --+ A a.s.,

(67) IIC rll o(A) aoS.

Therefore, if ,n o(n), the modified CDC excited by X is optimal. Moreover, the WLS
estimator On converges almost surely to 0 and

( )(68) II0  +, 0112 O
,f(log n)

a.s.

Finally, and are both strongly consistent estimators off and wefind relations similar
to (67) with f’n or instead ofC.
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98 B. BERCU

Proof The proof is given in Appendix E.
Remark. If assumption (N1) is satisfied with c > 2, then, by use of the conditional

Borel-Cantelli lemma, we can take cn r/ with 2c- < /3 < 1. We can also choose

an (log sn) -1-’r with 7 > 0. Therefore, if we take An n6 with/3 < 6 < 1, we obtain
the convergence rates r-6(log n) +’ for the strong consistency and n6-1 for the optimality.
In addition, if e and are Gaussian white noises, then, using again the Borel-Cantelli lemma,
we can take cn log n. On one hand, if we focus our attention on the strong consistency, we
can use the same choice as above and find the convergence rate r-6 (log n) +’r. On the other
hand, if we are interested in the optimality, we can take An (log r) 6 with 2(1 + 7) -< 6 and
we obtain the convergence rate r- (log n)6. One can realize that the attenuation A (An)
plays a prominent part, reducing the role of the weighting sequence a (an).

7. Survey on adaptive tracking. We now give a short survey on earlier related works
on adaptive tracking. We complete this section by comparing our work with previous similar
results.

Concerning the SG algorithm, Goodwin, Ramadge, and Caines [18] proved global con-
vergence and adaptive tracking control (ATC) optimality. In the scalar tracking problem,
Becker, Kumar, and Wei [2] established convergence to a random multiple of the parameter to
be estimated. If the tracking trajectory is sufficiently rich, Kumar and Praly [2 l] showed, in
the scalar case, strong consistency and ATC optimality. Caines [6], [8] realized that, in order
to enforce strong consistency, it is necessary to modify the ATC ofAstr6m and Wittenmark
and he introduced the CDC. In the scalar case, Caines and Lafortune [7] obtained the first re-
sults of CDC optimality and persistent excitation. For the same purpose, Chen [9], 11 chose
a weak hypothesis of excitation and using this assumption, Chen and Caines [10] proved,
in the scalar case, strong consistency and CDC residual optimality. In a multidimensional
framework and with a restrictive assumption on the noise, Chen and Guo 13] established both
strong consistency and CDC optimality.

Concerning the ELS algorithm, Solo [27] gave, in the scalar case, a persistent excita-
tion condition in order to guarantee strong consistency. Lai and Wei [23], [24] proposed
a weaker excitation condition to obtain strong consistency. For bounded noise, they used
a rather complicated control to obtain both strong consistency and CDC optimality. Under
the same condition but in a multidimensional framework, Lai and Wei [25] showed strong
consistency and gave an excitation transfer theorem useful in obtaining persistent excitation
results. Analogously, in a multidimensional framework, Chen and Guo [12] gave conditions
to obtain strong consistency. Then they used a rather complex control to prove both strong
consistency and CDC optimality with almost sure rates of convergence. Chen and Zhang 14]
established similar results in the multi-delay case. Recently Kumar [22] showed, for white
Gaussian noise and in a regression framework, the existence of an almost sure limit for the least
squares estimator, for almost all parameter values. Strong consistency and optimality results
followed. Sin and Goodwin [26] introduced the modified least squares (MLS) algorithm and
obtained results similar to those of Goodwin, Ramadge, and Caines 18]. Chen [9], 11 also
introduced an algorithm similar to the MLS and in a multidimensional framework he proved
strong consistency and CDC residual optimality.

Recently, Guo and Chen [19], [15] established the most important result concerning
adaptive tracking for ARMAX models. They found a solution to the twenty-year-old adaptive
tracking problem proposed by Astr6m and Wittenmark ]. In a multidimensional framework,
they proved both strong consistency ofELS estimator and CDC optimality. They also provided
almost sure rates of convergence. The key idea was an over-estimation of the ARMAX
regression vector norm.

With the WLS algorithm, we have also given a solution to the Astr6m and Witten-
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 99

mark [1] adaptive tracking problem. We now compare our work to the results of Guo and
Chen[ 19].

One can remark that the WLS algorithm is similar to the ELS. The main difference is
the easy introduction of a random weighting sequence a (an) in relation (10).

To obtain strong consistency results, Guo and Chen [19] always required that the
driven noise e h.ad finite conditional moment of order > 2. In 4, we showed how to avoid this
assumption by the choice of an admissible weighting sequence. Moreover, it is easy to see
via (24) that the WLS estimator performs as well as that of the ELS for ARMAX parameter
estimation.

Furthermore, to obtain adaptive tracking results, Guo and Chen [19] proposed a mod-
ified ELS estimator. One can realize that they established CDC optimality by use of a rather
technical procedure. Our modification (51) is really simple. Moreover, via (26), we can easily
prove the CDC optimality. In addition, our results are also true without modification if the
continuity assumption (A2) on the distribution of e is satisfied. One can remark that such a
result has not been proved by Guo and Chen[ 19] with pure ELS estimator.

Finally, we have shown that the WLS algorithm is really easy to handle. We can choose
the weighting sequence or the attenuation as we want to privilege the strong consistency or
the optimality. One can also realize that our convergence rates are more precise. For example,
suppose that we focus our attention on the control optimality. If e is a Gaussian white noise,
we can take the attenuation An (log n)4. Then, we obtain from (66) a convergence rate in
power of log n. It improves the result of Guo and Chen [19] as they founded a convergence
rate in power of n.

8. Conclusion. Finally, as it was done for the ELS algorithm, we have shown that the
WLS algorithm has rather attractive properties. Under classical assumptions, we have proved
both strong consistency of the WLS estimator and CDC optimality. We have also established
almost sure rates of convergence. We can easily guess that the weighted estimation can be used
in many other frameworks. For instance, the adaptive tracking problems for linear ARMAX
models with time varying parameters or for functional ARMAX models remain to be studied,
following the choice of suitable weighting sequences.

Appendix A. We make use of the following two lemmas.
LEMMA 1. Set fn(a) an*(bnSl(a)(bn and 9n(a) an *(bnSll(a)dPn Then

(1-fn(a))-- (l+gn(a))- so 0<_ fn(a) <_ 1;

+

fn(a) <_ inf{1, log(det S(a))- log(det Sn_(a))}.

LEMMA 2. Assume that is a martingale difference sequence satisfying (5). For a vecto-
rial random sequence n) adapted to F, set

Then we always have

n

Mn+l Z
k=O
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O0 B. ERCU

We can easily proveLemma 1 using the same arguments as without the weighting sequence
a (an). Lemma 2 can be established by the use of a stopping time argument together with
the Kolmogorov’s inequality 17]. It can also be proved via the Burkholder, Davis, and Gundy
inequality 16], [28].

Proof of Theorem 1. For r >_ 0, set 0n 0n 0,n g, en, and v,
tr(*OnSn-(a)On), where S_(a) S. By Lemma 1, we can find the following relation
similar, without the weighting sequence a (a,), to the well-known equality due to Caines
[8], Chen [11], Duflo [17], Guo and Chen [11], [15], or Lai and Wei [25]"

(A.1)

Tb

n/ + Pr/ o -t- alla/ 2 + 2Z anf(a)lle+ 112
k=0 k=0

+2Re(Mn+l) 2Re(L,+I),

with an -*On(I)n-1 3n *0n(l)r _qt_ fn(g)n; and

" Pn+l 2=oakf(a)(1 fk(a)) + Ck+l[ 2,
M+ k=o ak *3kek+l,
Ln+l k=0 ak *ak+lgk+.

Moreover, since (A1) is satisfied, a C(R)Y and a (a) is positive and nonincreasing,
we can find a positive constant and an integrable random variable L such that

(A.2) 2Re(Ln+l) + L >_ (1 + l)Z ak ozk-+-i 2.
k=0

In addition, it immediately follows from Lemma 2 that

(A.3)

Therefore, recalling that 3n -a,+l fn(a)Cn+l, we obtain that either

(A.4)

or

Finally, by (A.1) and (A.2), we find that

Now, from (5) and (15) together with the monotone convergence theorem,

(A.7) E[af(a)"+’"2=o <+"
Then we obtain (18) from (A.6) and (A.7). Next, we also obtain (19) and (21) from (A.1), (A.2),
(A.7) and the passivity assumption. It remains to show (20) and (22). Let 0-*0
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 101

be the prediction error at time n. By use of Lemma 1, we have (1 f7%(a))Trn 7%+1 -t-
fn (a)e7%+l. Hence, (21) and (A.7) imply

(A.8) E[-a7%(1-fn(a))2’lTrnl’2]n=o
Recalling (A. 1), we also find that

(A.9) E [sup Phi[7%_>1
<4-00,

(A.10) [af(a)(1-f(a))llzr121=o
and we clearly deduce (22) from (A.8) and (A.10). Furthermore, by the matrix inversion
formula of Riccati, we obtain

(A.11) *(b7%S(a)(bn (1 fn(a))2*dpnS-2l(a)(bn._

So if we set d dip 4- d2q 4- d r, we obtain, by Lemma 1,

(A.12) an.XminSn-l(a)*dPnS2(a)d27% <_ dfn(a)(1 fn(a)).

Finally, (10) and (14), together with (A.12) and (22), imply (20), completing the proof of
Theorem 1. []

Appendix B.
Proof of Theorem 2. Denote by s and ao the limits of the sequences s (s7%) and

a (an), respectively. To use relation (26) together with Kronecker’s lemma, we first have
to show that so +oc. If we assume that so < +ec, it follows from the assumption
s 0(a7%) that necessarily ao > 0. Hence, using (21), we have

(B.1)
n=0

If we set qn ’=o IIll 2 + s, we can easily see that

(B.2) q7% _< 2 II q 12 + 2sn,
k=o

so qo < +oc where qo denotes the limit of the sequence q (%). But we also have from
(6) that

(B.3)
k=0

and as e satisfies the LN, we get n O(qn). Finally, we lead to a contradiction so that
s +oc, ao 0. Moreover, we also have

(B.4) sn <_ 2 IIq 112 + 2qn.
k=0
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102 B. BERCU

Then, by use of (21) together with Kronecker’s lemma, we find that

(B.5) II ’kll o(a-1)
k=0

and, as a- O(sn), we obtain sn O(q). In addition, from (6), we have

(B.6) q o liYll 2 + Ilgll 2 + IIll 2

k=0 k=0 k=0

Hence, assumptions (N) or (N2) imply that

(8.7) q O + IIg 2 + g 2

k=0 k=0

Recalling (1), we have U_ D-(R)B+A(R)Y D-(R)B+C(R)en, where R is the
shift-back operator. Then, using (B.7), we find that

(g.8) q_ 0 + I11

and so, as s O(q), we prove that

(B.9) s_-O n+ IIYll 2

k=l

By (26) and the assumption (36) for the tracking trajectory, we have

(n.10) 11Y1 o(s_,) + O(n).
k=l

Finally, using (B.9), we obtain that

k=l

From (26) together with onecker’s lemma, we conclude that the ATC is optimal. Moreover,
(26) immediately implies (37). We complete the proof using Corollary 3.

Appendix C.
ProofofTheorem 3. Using the same ideas developed by Bercu and Duflo [4] in the ARX

framework, we now prove the Theorem 3. We have already seen in Theorem 2 the ATC
optimality with

c,) I1112 o().

Set, for n O, tL (ty++ + te+,+, t+,+). Using the notation of the ET Lemma,
we obtain from (33),

p+s+l

<c.2) IIH. L. 2 II-k*
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 103

Then it follows from (C. 1) and (C.2) that

(c.3) Z IIHk+’ Lk+, o(n),
k=0

Moreover, as y is strongly exciting with order p / s / 1, we have

(C.4) lim inf/min ( yp+S
n

k=0
kh-1

Furthermore, F is regular. Hence, if we assume that Yn+l is Un-p-8 N Un__8-measurable,
we find, by use of a classical excitation transfer property proved by Duflo 17] or Lai and Wei
[251, that

(c.5) Lk+l Lk+l > O.
T

k=0

Then (C.3) together with (C.5) imply

(C.6) liminf,min -1 tJk+l *Hk+l > 0.
T

k=0

Now, if we set

(C.7) Q + Q,
k=0

aQ <_ Q(a) < Qn.

Hence, by use of the ET Lemma, we find that n O(/min(n), which implies na
O(AminQ(a)). In addition, we have already proved that s O(n). Consequently, from
the assumption (asn)-’ O(a), we find that/minQn(a) /OO. Next, q O(n),
so log(/maxQn(a)) O(log(n)) and log(,maxQn(a)) o(/minQn(a)). Therefore, via a
well-known transfer property, we can conclude that na O(/minn (a)). Finally, the WLS
estimator is strongly consistent and from (24) we obtain the convergence rate given in (44).
Moreover, by use of (27), we also find that

(c.8)

Hence, we obtain, from Kronecker’s lemma,

(C.9) I111 o(a-l).
k=l

Finally, from (34) and (C.9), we obtain the convergence rate given in (42). In addition, we
immediately obtain (43) from (C.8). To complete the proof of Theorem 3, we now show that
IIq),ll 2 o(n). It will clearly lead to f(a) o(1)_. From (C.8), we have I1112
Then, (33) together with the assumption IlYn 2 o() imply I1/112 o(). Recalling (1)
and the causality assumption (A3), we have

Un D-I(R)t+A(I)Yn+I D-l(R)B+V(t)en+l,
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104 B. BERCU

where R is the shift-back operator. Hence, we can see that [Ignl] 2 o(). Finally ]]tI/n][ 2
o(n) and from (21), I1112 o(), completing the proof of Theorem 3. []

Appendix D.
Proof of Theorem 5. From the causality assumption (A3), Caines [8] or Guo and Chen

19] proved that we can find a positive constant A < such that

(D.1)

where

(D.2)

Furthermore, we have from (25) that

(D.3) iill 2 o(a-1 .Af_ 11112).

In addition, (54) and (55) together with (D.1) imply

(D.4) IIY+, 2 O(ozn-t-, -[- O(I]Trll 2) + O(F+,).

Therefore, it follows from (21) and (D. 1)- (D.4) that

(D.5) I1+ 2 <_ o(+) + o(Z+),

where vn c + aX . Moreover, as F+ AF + IlYn+l 2, we obtain

(D.6)

for some positive constant # < 1. Finally F O(vn) and we obtain that

(D.7) ll(I)ll 2 O(vn+,).

Recalling (55), we also have

(D.8) }}GII 2 G 2}},rrll 2 -t-2ll*.,ll 2.

Hence, by use of (26) and (D.8), since u (u) is summable, we find that

(D.9) 11#’112 < +c.
=0

Therefore, as in the proof of Theorem 2, it follows from (D.9) that sn O(n). Finally, (56)
and (D.9) imply the modified ATC optimality. In addition, it immediately follows from (D.7)
that a + II(I,nll 2 O(vn+). Then, we establish from (25) that

(D.IO) Z I1"11 < +o.
n=O )n+

Finally, (54) and (D.10) together with Kronecker’s lemma imply (59) and (60), completing
the proof of Theorem 5. []
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 105

Appendix E.
Proofof Theorem 6. We prove Theorem 6 using the same approach as Bercu and Duflo

[4] in the ARX framework. The exogenous noise satisfies assumption (N). Then, as., .,-1 _< 1, we obtain, by use of Chow’s lemma,

(E.1) ZA(A, A_,)({ *{ A) < +.

But X A A_{, so (E. 1) implies immediately that

(E.2) A (X*X (k A_)A) < +.
n=l

Then, as A (k) increases to infinity, we obtain, by onecker’s lemma,

A.(E.3)
A =

Since A is regular, we immediately obtain from (E.3) that

(E.4) lim inf min k k > 0.

Moreover, as O(), we also have I1112 0(). Consequently, by use of (62)
together with the proof of Theorem 5, we obtain the first relation of (64). Therefore, since

v o(), we obtain, from (25),

(g.5) I112
Set, for >_ 0, t ,(tP+s+l + te+s+l + t+s+ te+s+l). Using the notation of the
ET Lemma, we obtain, from (62),

p+s+l

(g.6 I+, +1 2 I1-+ 2.
k=l

Then, from (E.5) and (E.6), we obtain

(g,7) 11 112
In addition, by (E.4), we also have

L*L > 0.(E.8) lim inf min
=1

Finally, (E.7), (E.8), and the ET Lemma imply O(minQn). Therefore, as in the proof
of Theorem 3, the assumption (a)-’ O(a)impliesa O(minS(a)). Hence,
we clearly obtain the second relation of (64). Moreover (68) follows immediately from (24).
Recalling (27), (55), and (64), as v o() and the sequence (n) is summable, we also
find that

(E.9)
r--0
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106 B. BERCU

Then we clearly obtain (65) from (E.9). Finally, we obtain (66) and (67) from (62), (E.3), and
(E.5), completing the proof of Theorem 6. []
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