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Abstract. In autoregressive adaptive tracking, we prove that the least squares and the weighted
least squares algorithms possess the same asymptotic properties, sharing the same central limit
theorem and the same law of iterated logarithm. We also obtain the same asymptotic behavior and
show the limitations of these results in the autoregressive with moving average framework.
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Notations. For any square matrix A, tr(A) is the trace of A and det(A) denotes
the determinant of A. In addition, λminA and λmaxA are the minimum and the
maximum eigenvalues of A, respectively. Finally, for any vectorial sequence X=(Xn)
and any integer p≥1, Xp

n=(Xt
n, . . . , X

t
n−p+1).

1. Introduction. Let (Ω,A, P ) be a probability space endowed with a filtration
F=(Fn)n≥0, where Fn is the σ-algebra of the events occurring up to time n. Consider
the controlled autoregressive with moving average (ARMA) model of order (p, r)
given, for all n ≥ 0, by

Xn+1 = θtΨn + Un + εn+1,(1)

where Xn, Un, and εn are, respectively, the d-dimensional system output, input, and
driven noise and Ψn = (Xp

n, ε
r
n)t. In order to estimate the unknown δ × d matrix θ

with δ = d (p+ r), we use the weighted least squares (WLS) algorithm that satisfies,
for all n ≥ 0,

θ̂n+1 = θ̂n + anS
−1
n (a)Φn

(
Xn+1 − Un − θ̂tnΦn

)
t,(2)

Sn(a) =
n∑
k=0

akΦkΦtk + S,(3)

ε̂n+1 = Xn+1 − Un − θ̂tn+1Φn, Φn = (Xp
n, ε̂

r
n)t ,(4)

where the initial value θ̂0 is arbitrarily chosen and S is a deterministic, symmetric,
and positive definite matrix. We set

Sn =
n∑
k=0

ΦkΦtk + S, sn = tr(Sn).(5)

The choice of the weighted sequence a=(an) is crucial. If

an = 1(6)
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we find again the extended least squares (ELS) algorithm. Otherwise, if

an =
(

1
log sn

)1+γ

(7)

with γ > 0, we obtain the WLS algorithm proposed by Duflo and Bercu [4], [5]. For
these two algorithms, a wide literature concerning the strong consistency and the
optimality in adaptive tracking is available (see, e.g., [4], [5], [6], [8], [9], [10], [11],
[13], [15], [20], [26]). In these papers, it is always necessary to establish an excitation
property for the regressive sequence Φ = (Φn). To be more precise, for the strong
consistency, one has to prove that

λminSn −→ +∞, log λmaxSn = o(λminSn) almost surely (a.s.)(8)

and, for the optimality, that sn = O(n) a.s. In fact, one always has to show that
n = O(λminSn) and λmaxSn = O(n) a.s. In autoregressive (AR) adaptive tracking
with r = 0, we improve the previous results showing the almost sure convergence

Sn
n
−→ Lp,(9)

Lp = diag (Γ, . . . ,Γ), where Γ is the conditional covariance matrix of the driven noise.
This convergence allows us to obtain a central limit theorem (CLT) and a law of
iterated logarithm (LIL) for both LS and WLS algorithms. Since the WLS introduces
less weight to the more recent information than the LS, one may expect that WLS
may be inferior to LS in asymptotic properties. However, we prove that in the AR
framework, the LS and WLS algorithms possess the same asymptotic properties,
sharing the same CLT,

√
n(θ̂n − θ)

L−→ N (0, L−1
p ⊗ Γ),(10)

and the same LIL. In addition, we also obtain that the ELS and WLS algorithms have
the same asymptotic behavior in the ARMA framework. Finally, there is no loss in
asymptotic efficiency by using WLS, which has many other advantages [4], [5], [17],
[22] over LS or ELS in adaptive control theory.

The paper is organized as follows. In section 2, we establish in the AR framework
the same CLT and LIL for LS and WLS algorithms. In AR adaptive tracking, the
limit matrix given in (9) is positive definite, while this is no longer true in ARMA
adaptive tracking. In the ARMA framework, in order to obtain strong consistency
results, it is necessary to introduce an excitation on the adaptive tracking control. In
section 3, we prove that the effect of this excitation is to make the limit matrix in
(9) positive definite. Therefore, for the ARMA models of orders one, we establish the
same CLT and LIL for ELS and WLS algorithms. In section 4, we show by simulations
the limitation of these last results if the ARMA orders are greater than one. A short
conclusion is given in section 5. All technical proofs are collected in the Appendices.

2. AR adaptive tracking. We first consider the AR framework with r = 0.
Let x = (xn) be a predictable reference trajectory, to track, step by step, by the
observation X=(Xn). To this end, we use the adaptive tracking control proposed by
Aström and Wittenmark [1] given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn.(11)
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Relation (1) can then be rewritten as

Xn+1 − xn+1 = πn + εn+1,(12)

where πn = (θ− θ̂n)tΦn. Throughout the following, we assume that the reference
trajectory x satisfies

n∑
k=1

‖ xk ‖2= o(n) a.s.(13)

We also assume that the driven noise ε = (εn) is a martingale difference sequence
with

E [ εn+1ε
t
n+1 | Fn ] = Γ,(14)

where Γ is a positive definite deterministic covariance matrix. Finally, we assume that
ε satisfies the strong law of large numbers; i.e., if

Γn =
1
n

n∑
k=1

εkε
t
k,(15)

Γn converges a.s. to Γ. This is the case if, for example, ε has finite conditional moment
of order > 2 or ε is a white noise, i.e., if ε is independant and identically distributed
with mean 0 and covariance matrix Γ. Let (Cn) be the average cost matrix sequence
defined by

Cn =
1
n

n∑
k=1

(Xk − xk)(Xk − xk)t.(16)

The adaptive tracking is said to be optimal if Cn converges a.s. to Γ. Let Lp be the
block diagonal square matrix of order δp=dp,

Lp = diag(Γ, . . . ,Γ).(17)

THEOREM 2.1. Consider the AR framework with r=0. Assume that ε has finite
conditional moment of order > 2. Then, for the LS algorithm, we have

Sn
n
−→ Lp a.s.(18)

In addition, the tracking is optimal:

‖ Cn − Γn ‖= O

(
logn
n

)
a.s.(19)

We can be more precise in (19) as follows

1
logn

n∑
k=1

(Xk − xk − εk)(Xk − xk − εk)t −→ δpΓ a.s.(20)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
logn
n

)
a.s.(21)



CLT AND LIL FOR LEAST SQUARES ALGORITHMS 913

Proof. The proof is given in Appendix A.
THEOREM 2.2. Consider the AR framework with r= 0. Assume that either ε is

a white noise or ε has finite conditional moment of order > 2. Then, for the WLS
algorithm with a−1

n =(log sn)1+γ , where γ>0, we have

(logn)1+γ Sn(a)
n
−→ Lp a.s.(22)

In addition, the tracking is optimal:

‖ Cn − Γn ‖= o

(
(logn)1+γ

n

)
a.s.(23)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
(logn)1+γ

n

)
a.s.(24)

Proof. The proof is given in Appendix B.
Remark. Theorem 2.2 is similar to Theorem 2.1. On the one hand, it is not

necessary to require a conditional moment of order > 2 for the noise ε. On the other
hand, we note a loss in (log n)γ in the rates of convergence.

THEOREM 2.3. Consider the AR framework with r=0. Assume that ε has finite
conditional moment of order α > 2 and that x has the same regularity in norm as ε;
i.e., for all 2 < β < α,

n∑
k=1

‖ xk ‖β= O(n) a.s.(25)

Then, the LS and the WLS algorithms share the same CLT,

√
n(θ̂n − θ)

L−→ N (0, L−1
p ⊗ Γ),(26)

with L−1
p ⊗ Γ = diag(Γ−1 ⊗ Γ, . . . ,Γ−1 ⊗ Γ). In addition, for any vectors u∈ Rd and

v∈ Rdp, they also share the same LIL,

lim sup
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u = − lim inf
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u

= (vtL−1
p v)1/2(utΓu)1/2 a.s.(27)

In particular,(
λminΓ
λmaxΓ

)
≤ lim sup

n→∞

(
n

2 log logn

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ
λminΓ

)
a.s.(28)

Proof. The proof is given in Appendix C.
Remark. First, one can realize that (28) improves Theorem 3.1 of Guo [16] for

the LS algorithm. Next, we can also prove that Theorem 2.3 holds for the cost matrix
sequence (Cn). To be more precise, assume that ε satisfies the following CLT:

√
n(Γn − Γ) L−→ N (0,Λ),(29)
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where Λ is an appropriate deterministic covariance matrix. Then, by (19) or (23), it
immediately follows that

√
n(Cn − Γ) L−→ N (0,Λ)(30)

for both LS and WLS algorithms. Moreover, via (19) or (23), we can also obtain
an LIL for the sequence (Cn). Finally, in AR adaptive tracking, we can avoid the
restrictive assumption (13) on the reference trajectory x. Using the same approach
developed in Appendix A, we only need to assume that x satisfies the strong law of
large numbers

1
n

n∑
k=1

xkx
t
k −→ ∆ a.s.,(31)

where ∆ is a deterministic covariance matrix. Then, we just have to replace Γ by
Γ+∆ in relation (17).

3. ARMA adaptive tracking. We now consider the ARMA framework. We
always use the adaptive tracking control given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn,(32)

where the reference trajectory x satisfies (13). Relation (1) can be rewritten as

Xn+1 − xn+1 = πn + εn+1,(33)

where πn=θtΨn− θ̂tnΦn. Let Lr be the block diagonal square matrix of order δr=dr,

Lr = diag(Γ, . . . ,Γ).(34)

For s = inf{p, r}, let K be the rectangular matrix of dimension δp × δr with all
coefficients equal to 0 except its left superior block, which is the block diagonal square
matrix of order ds, Ls. Finally, let L be the square matrix of order δ=δp + δr:

L =
(
Lp K
Kt Lr

)
.(35)

Throughout the following, we make use of the traditional assumption of passivity: if
C is the matrix polynomial associated with the moving average (MA) part of (1) and
Id is the identity matrix of order d,

(P) C−1 − 1
2
Id

is strictly positive real. In the ARMA framework, many results concerning the track-
ing optimality are available (see, e.g., [2], [5], [11], [15], [16]). It is also well known
that we can’t directly obtain strong consistency for both ELS or WLS algorithms (see,
e.g., [5], [7], [11], [13], [17]). Nevertheless, we prove in the following lemma that con-
vergences (18) and (22) still hold here, replacing Lp by L. This can lead to interesting
asymptotic properties.

LEMMA 3.1. For the ARMA model, assume that (P) is satisfied. Then, for the
ELS algorithm, if ε has finite conditional moment of order > 2, we have

Sn
n
−→ L a.s.(36)
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In addition, for the WLS algorithm with a−1
n =(log sn)1+γ , where γ>0, if ε is a white

noise or if ε has finite conditional moment of order > 2, we have

(logn)1+γ Sn(a)
n
−→ L a.s.(37)

Proof. The proof is given in Appendix D.
THEOREM 3.2. For the ARMA model, assume that (P) is satisfied and consider

the regulation problem with x = 0. Assume that ε has finite conditional moment of
order > 2. For a positive, nonincreasing, and deterministic sequence (αn) such that
αn =O(n), assume that ‖ εn ‖2=O(αn). Let (λn) be a positive, nonincreasing, and
deterministic sequence such that ncαn=O(λn), n1+cαn=O(λ2

n) with 0<c<1 for the
ELS algorithm, and c=0 for the WLS algorithm. Finally, assume that

‖ Γn − Γ ‖= o

(
λn
n

)
a.s.(38)

Then, for both ELS and WLS algorithms, the tracking is optimal:

‖ Cn − Γ ‖= o

(
λn
n

)
a.s.(39)

Moreover, we also have ∥∥∥∥Snn − L
∥∥∥∥ = o

(
λn
n

)
a.s.(40)

Finally, on the one hand, it results for the ELS estimator that

‖ L1/2(θ̂n − θ) ‖2= o

(
λn

logn
n

)
a.s.(41)

On the other hand, we have for the WLS estimator that

‖ L1/2(θ̂n − θ) ‖2= o

(
λn
n

)
a.s.(42)

Remark. If ε has finite conditional moment of order α>2, we can take by Chow’s
lemma (see, e.g., Corollary 2.8.5 of Stout [23] or [12]) the sequence (λn) such that

∞∑
k=1

(
1
λn

)α/2
< +∞.(43)

We can choose, for example, λn = nβ with 2α−1 < β < 1. One can realize that (41)
improves Theorem 3.2 (i) of Guo [16].

Proof. By Theorem 1 of Guo and Chen [15] and Theorem 5 of Bercu [5] on the
prediction errors sequence (πn), respectively, we have

n∑
k=0

‖ πk ‖2= o(ncαn) a.s.(44)

with c>0 for the ELS algorithm and
n∑
k=0

‖ πk ‖2= o(a−1
n + αn) a.s.(45)
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for the WLS algorithm. Then, for these two algorithms, we find that
n∑
k=0

‖ πk ‖2= o(λn) a.s.(46)

By (33), we also have

‖ Cn − Γn ‖= O

(
1
n

n∑
k=1

‖ πk−1 ‖2
)

a.s.,(47)

and we immediately obtain relation (39). Therefore (33), (44), and (45), together
with the second assumption on the sequence λ = (λn), imply (40). Finally, for the
ELS estimator, by Theorem 1 of Lai and Wei [19], we have ‖ θ̂n+1 − θ ‖2=O(logn)
a.s. Moreover, by Theorem 1 of Bercu [5], the WLS estimator is always a.s. bounded,
‖ θ̂n+1 − θ ‖2=O(1). Therefore, (40) clearly implies (41) and (42), completing the
proof of Theorem 3.2.

In order to obtain strong consistency for ELS and WLS algorithms, we are brought
to introduce an excitation on the adaptive tracking control. As one can see below,
the effect of this excitation is to make the limit matrix in Lemma 3.1 positive definite.
First, we use the continually disturbed control given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn + ξn+1,(48)

where the reference trajectory x satisfies (13) and ξ is an exogenous noise of dimension
d, adapted to F, with mean 0 and positive definite covariance matrix Λ. In addition,
we assume that ξ is independent of ε, of x, and of the initial state of the system. Let

∆n =
1
n

n∑
k=1

(εk + ξk)(εk + ξk)t.(49)

Assume that ξ satisfies the strong law of large numbers, so ∆n converges a.s. to Γ+Λ.
Relation (1) can be rewritten as

Xn+1 − xn+1 = πn + εn+1 + ξn+1.(50)

The adaptive tracking is said to be residually optimal if Cn converges a.s. to Γ+Λ.
Let H be the square matrix of order δ=δp + δr,

H =
(
Hp K
Kt Lr

)
,(51)

where Hp is the block diagonal square matrix of order δp=dp:

Hp = diag(Γ + Λ, . . . ,Γ + Λ).(52)

THEOREM 3.3. For the ARMA model, assume that (P) is satisfied. Assume that
ε has finite conditional moment of order > 2. Then, for the ELS algorithm, we have

Sn
n
−→ H a.s.(53)

In addition, the tracking is residually optimal:

‖ Cn −∆n ‖= O

(
logn
n

)
a.s.(54)
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Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
logn
n

)
a.s.(55)

Proof. The proof is given in Appendix D.
THEOREM 3.4. For the ARMA model, assume that (P) is satisfied. Assume that

either ε is a white noise or ε has finite conditional moment of order > 2. Then, for
the WLS algorithm with a−1

n =(log sn)1+γ , where γ>0, we have

(logn)1+γ Sn(a)
n
−→ H a.s.(56)

In addition, the tracking is residually optimal:

‖ Cn −∆n ‖= o

(
(logn)1+γ

n

)
a.s.(57)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
(logn)1+γ

n

)
a.s.(58)

Proof. The proof is given in Appendix D.
Remark. We note that Theorems 3.3 and 3.4 are similar to Theorems 2.1 and 2.2.

In addition, it is easy to see that the matrix H is positive definite. In fact, if p≤r, then
detH=(det Γ)r(det Λ)p, and if p>r, then detH=(det Γ)r(det Λ)r(det(Γ + Λ))p−r.

THEOREM 3.5. For the ARMA model, assume that (P) is satisfied, with p and r
equal to 1. Assume that ε and ξ have finite conditional moments of order α > 2. On
the one hand, assume that x satisfies (25) and

n∑
k=1

‖ xk ‖2= o

(
n

logn

)
a.s.(59)

for the ELS algorithm. On the other hand, assume that x satisfies (25) and

n∑
k=1

‖ xk ‖2= o

(
n

(logn)2+2γ

)
a.s.(60)

for the WLS algorithm with a−1
n = (log sn)1+γ , where γ > 0. Then, the ELS and the

WLS algorithms share the same CLT,

√
n(θ̂n − θ)

L−→ N (0, H−1 ⊗ Γ).(61)

For any vectors u∈ Rd and v∈ Rδ, they also share the same LIL,

lim sup
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u = − lim inf
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u

= (vtH−1v)1/2(utΓu)1/2 a.s.(62)
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In particular,(
λminΓ
λmaxH

)
≤ lim sup

n→∞

(
n

2 log logn

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ
λminH

)
a.s.(63)

Proof. The proof is given in Appendix E.

4. Simulations. The goal of this section is to show that Theorem 3.5 is no
longer true if the orders p or r are greater than 1. From relations (1) and (2), we have

Sn−1(a)(θ̂n − θ) = Mn(a)−Rn−1(a)θ,(64)

Mn(a) =M0+
n∑
k=1

ak−1Φk−1ε
t
k, Rn(a) =

n∑
k=0

akΦk(Φk −Ψk)t(65)

with M0 =S(θ̂0−θ). By Lemmas C.1 or C.2 in Appendix C, we know how to deal with
Mn(a). The remainder Rn(a) is much more complicated to study. This remainder
vanishes in the AR framework. Consequently, we can easily establish CLT and LIL
as in Theorem 2.3. In order to obtain similar results in the ARMA framework, we
have to prove that the remainder Rn(a) can be neglected. This was done with p and
r equal to 1 in Theorem 3.5. Unfortunately, if p or r is greater than 1, Rn(a) plays
a prominent part and is really very complicated to study. We shall now show it by
simulations for the ELS algorithm. Consider the following two models:

(I) Xn+1 =
5
4
Xn +

1
2
Xn−1 + Un +

3
4
εn + εn+1,

(II) Xn+1 =
5
4
Xn + Un +

3
4
εn +

1
4
εn−1 + εn+1,

where ε is a Gaussian white noise N(0, 1). For simplicity, we study the regulation
problem taking the reference trajectory x = 0. Therefore, we use the continually
disturbed control

Un = −θ̂tnΦn + ξn+1,(66)

where ξ is an exogenous Gaussian white noise N(0, 1). We base our simulations on
M = 500 realizations of sample size N = 10000. In order to keep this section brief,
we focus our attention on the behavior of the statistic

ZN =
√
NH1/2(θ̂N − θ),(67)

where the matrix H is for models (I) and (II), respectively: 2 0 1
0 2 0
1 0 1

 ,

 2 1 0
1 1 0
0 0 1

 .(68)

We expect at least that each component of ZN has N(0, 1) distribution. Figure 1
represents the three coordinates of ZN in model (I). One can realize that the second
coordinate is not N(0, 1). Figure 2 represents the three coordinates of ZN in model
(II). One can realize that the third coordinate is not N(0, 1). Next, if we consider
an ARMA model of orders p= 2 and r= 2, we can also see that the second and the
fourth coordinates of ZN are not N(0, 1). We can conclude that if p or r is greater
than 1, Rn(a) plays a prominent part which can’t be neglected. It would be very nice
to clarify the behavior of Rn(a) in ARMA adaptive tracking.
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5. Conclusion. In AR adaptive tracking, we have proved that the LS and the
WLS algorithms share the same CLT and LIL. We have also extended and shown
the limitations of these results in the ARMA framework. One can ask the natural
question: Why make use of the WLS algorithm?
• First, we have seen in this paper that WLS performs as well as ELS for parameter

estimation when the system is persistently excited. There is no loss in asymptotic
efficiency by using the WLS algorithm.
• Next, as it was shown in [5], the WLS algorithm is more convenient than

the ELS in the analysis of autoregressive with moving average and exogenous control
(ARMAX) adaptive tracking thanks to the behavior of the prediction errors sequence.
The convergence rates proved for the tracking optimality are in general better for the
WLS [5] than for the ELS [15].
• In the ARMAX framework, the leading matrix associated with the control is

usually called the high frequency gain. For ARX models with known or unknown
high frequency gain, strong consistency and tracking optimality results have been
established in [16]. It is reasonable to conjecture that CLT and LIL could also be
proved for ARX models with known high frequency gain. However, it would be
extremely difficult in the general case.
• Finally, Guo [17] has recently proved the almost sure self-convergence of the

WLS algorithm. This property can lead to various applications in adaptive control
theory such as adaptive pole-placement and LQG problems [17], [22] for ARMAX
models.
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Appendix A.
Proof of Theorem 2.1. By the strong law of large numbers and relation (12), we

easily prove that n = O(sn). By Lemma 1 of Guo and Chen [15] or Theorem 1 of
Bercu [3] on the prediction errors sequence (πn), we have

n∑
k=1

(1− fk) ‖ πk ‖2= O(log sn) a.s.,(A.1)

where fn = ΦtnS
−1
n Φn. If ε has finite conditional moment of order α > 2, using the

same approach as Chen and Guo [11], [15], we can show by (A.1) that ‖ Φn ‖2=O(sβn)
with 2α−1 < β < 1. We also find by (A.1) and (12) that

n∑
k=1

‖ πk ‖2= o(sβn log sn) a.s.,(A.2)

n∑
k=1

‖ Xk+1 ‖2= o(sβn log sn) +O(n) a.s.(A.3)

Finally, we obtain that sn=o(sn) + O(n), so sn=O(n). Consequently, we prove the
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tracking optimality, as by (12) and (A.2),

‖ Cn − Γn ‖= O(
1
n

n∑
k=1

‖ πk−1 ‖2) a.s.,(A.4)

n∑
k=1

‖ πk ‖2= o(n) a.s.(A.5)

We still have to establish the convergence rate given in (19). As the reference trajec-
tory x satisfies (13), we have already proven the almost sure convergence

1
n

n∑
k=0

XkX
t
k −→ Γ.(A.6)

Recalling (12), we have for 1≤ i≤p− 1 that

n∑
k=1

XkX
t
k−i =

n∑
k=1

(πk−1 + xk)Xt
k−i +

n∑
k=1

εkX
t
k−i.(A.7)

The right-hand side of (A.7) is a regressive sequence. Therefore, we have a.s.∥∥∥∥∥
n∑
k=1

XkX
t
k−i

∥∥∥∥∥ ≤
n∑
k=1

‖ πk−1+xk ‖‖ Xk−i ‖+o

(
n∑
k=1

‖ Xk−i ‖2
)
.(A.8)

We prove, by (13) and (A.5), together with the Cauchy–Schwarz inequality, that

n∑
k=1

XkX
t
k−i = o(n) a.s.,(A.9)

which implies the convergence (18). As the matrix Lp is positive definite, it clearly
follows that n=O(λminSn), ‖ Φn ‖2= o(n), and fn tends a.s. towards 0. Then, by
(A.1), we find that

n∑
k=1

‖ πk ‖2= O(logn) a.s.,(A.10)

and consequently, we obtain the relation (19). By a well-known result established in
Theorem 1 of Lai and Wei [19], [20] for the LS estimator, we also have

‖ θ̂n+1 − θ ‖2= O

(
log sn
λminSn

)
a.s.,(A.11)

which implies (21). Moreover, if θ̌n = θ̂n − θ, we immediately deduce from (28) that

‖ S1/2
n−1θ̌n ‖2= o(logn) a.s.(A.12)

By Duflo, Senoussi, and Touati [14, p. 560], we also have the almost sure convergence

1
logn

(
θ̌tnSn−1θ̌n +

n−1∑
k=0

(1− fk)πkπtk

)
−→ δpΓ.(A.13)

Finally, (A.12) and (A.13) imply (20), completing the proof of Theorem 2.1.
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Appendix B.
Proof of Theorem 2.2. By Theorem 1 of Bercu and Duflo [4], [5] on the prediction

errors sequence (πn), we have

∞∑
n=1

an(1− fn(a)) ‖ πn ‖2< +∞ a.s.,(B.1)

where fn(a) =anΦtnS
−1
n (a)Φn. Then, as a−1

n =O(sn), we find by (B.1) together with
Kronecker’s lemma that

n∑
k=1

‖ πk ‖2= o(sn) a.s.(B.2)

Contrary to the LS algorithm, we can easily prove that sn=O(n). In fact, (B.2) and
(12) immediately imply

n∑
k=1

‖ Xk+1 ‖2= o(sn) +O(n) a.s.(B.3)

Therefore, sn=o(sn) +O(n), so sn=O(n). Finally, we have established the tracking
optimality. In Appendix A, we have also shown that n−1Sn converges a.s. to Lp.
Consequently, as the weighting sequence a = (an) is nonincreasing, it results that
anSn ≤ Sn(a) so nan = O(λminSn(a)) and fn(a) tends a.s. towards 0. We can
conclude by (B.1) that

n∑
k=1

‖ πk ‖2= o(a−1
n ) a.s.,(B.4)

which implies relation (23) as sn has the same order as n, so a−1
n is a.s. equivalent to

(logn)1+γ . We can also deduce (24), as by Theorem 1 of Bercu and Duflo [4], [5],

‖ θ̂n+1 − θ ‖2= O

(
1

λminSn(a)

)
a.s.(B.5)

Now, we have

Sn(a) = an+1Sn +
n∑
k=1

bk
Sk
k

+R(B.6)

with bn=n(an − an+1) and R=S0(a)− a1S0. In addition,

n∑
k=1

bk =
n∑
k=1

ak − nan+1.(B.7)

Next, as a−1
n is a.s. equivalent to (log n)1+γ ,

n∑
k=1

bk ∼ (1 + γ)
nan
logn

,
n∑
k=1

bk = o(nan) a.s.(B.8)

Finally, (B.6), together with Toeplitz’s lemma, imply the convergence (22), completing
the proof of Theorem 2.2.
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Appendix C.
Proof of Theorem 2.3. In order to prove Theorem 2.3, we need the two following

lemmas on regressive sequences. They result from the CLT on triangular arrays
[18], [21], [25] and from the LIL on martingales [14], [23], [24]. Let ε = (εn) be a
d-dimensional noise, adapted to F, which satisfies (14) where Γ is a deterministic
covariance matrix. Let ϕ = (ϕn) be a δ-dimensional sequence of random vectors,
adapted to F. Set, for n ≥ 0,

Mn = M0 +
n∑
k=1

ϕk−1ε
t
k, Sn =

n∑
k=0

ϕkϕ
t
k + S.

LEMMA C.1. Let (cn) be a deterministic real sequence increasing to infinity.
Assume that, for all ε > 0,

(H1) c−1
n Sn−1

P−→ L,

(H2) c−1
n

n∑
k=1

E
[
‖ ∆Mk ‖2 1{‖∆Mk‖≥ε

√
cn} | Fk−1

] P−→ 0,

where ∆Mn = Mn −Mn−1. Then, c−1
n Mn tends a.s. towards 0 and

1
√
cn
Mn
L−→ N (0, L⊗ Γ).

In addition, if L is positive definite, we have the CLT

√
cnS

−1
n−1Mn

L−→ N (0, L−1 ⊗ Γ).

Remark. Assume that ε has finite conditional moment of order > 2. Then,
Lindeberg’s condition (H2) is satisfied if ‖ ϕn ‖2=o(cn) a.s.

LEMMA C.2. Let (cn) be a deterministic real sequence increasing to infinity.
Assume that the noise ε has finite conditional moment of order α> 2. Also assume
that

(H3) c−1
n Sn−1 −→ L a.s.,

(H4)
∞∑
n=1

(
‖ ϕn ‖√

cn

)β
< +∞ a.s.,

with 2<β≤α. Then, for any vector u∈ Rd and v∈ Rδ such that vtLv>0, we have

lim sup
n→∞

(
1

2cn log log cn

)1/2

vtMnu = − lim inf
n→∞

(
1

2cn log log cn

)1/2

vtMnu

= (vtLv)1/2(utΓu)1/2 a.s.

In addition, if L is positive definite, we have the LIL

lim sup
n→∞

(
cn

2 log log cn

)1/2

vtS−1
n−1Mnu = − lim inf

n→∞

(
cn

2 log log cn

)1/2

vtS−1
n−1Mnu

= (vtL−1v)1/2(utΓu)1/2 a.s.
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Theorem 2.3 is a direct application of Lemmas C.1 and C.2. By the relations (1)
and (2), we have

θ̂n − θ = S−1
n−1(a)Mn(a),(C.1)

Mn(a) = M0 +
n∑
k=1

ak−1Φk−1ε
t
k(C.2)

with M0 = S(θ̂0 − θ). On the one hand, for the LS algorithm, we choose ϕn = Φn
and cn = n. On the other hand, for the WLS algorithm, we take ϕn = anΦn and
cn=n/(logn)2+2γ . First, for the LS algorithm, (26) can be clearly deduced via Lemma
C.1 together with (18) and equation (C.1). In addition, if ε has finite conditional
moment of order α > 2, for all 2 < β < α, we have by Chow’s lemma (see, e.g.,
Corollary 2.8.5 of Stout [23]) that

n∑
k=1

‖ εk ‖β= O(n) a.s.(C.3)

Since the reference trajectory x satisfies (25), we show by (A.10) that

n∑
k=1

‖ Xk ‖β= O(n),
n∑
k=1

‖ Φk ‖β= O(n) a.s.(C.4)

Therefore, as β>2, (C.4) implies

∞∑
n=1

(
‖ Φn ‖√

n

)β
< +∞ a.s.(C.5)

Finally, we find (27) via Lemma C.2 together with (18) and equation (C.1). Next, for
the WLS algorithm, set

Qn(a) =
n∑
k=0

a2
kΦkΦtk + S.(C.6)

As in (22), we prove that c−1
n Qn(a) converges a.s. to Lp. Hence, (22) and equation

(C.1) clearly imply (26). In addition, if ε has finite conditional moment of order α>2,
for all 2<β<α, we have by Chow’s lemma [23], together with (B.4),

n∑
k=1

(ak ‖ Φk ‖)β = O(n) a.s.(C.7)

Then, it follows from (C.7) that

∞∑
n=1

(
an ‖ Φn ‖√

cn

)β
< +∞ a.s.(C.8)

Finally, we prove (27) via Lemma C.2 together with (22) and equation (C.1), com-
pleting the proof of Theorem 2.3.
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Appendix D.
Proof of Theorems 3.3 and 3.4. First, we prove Lemma 3.1 for both ELS and

WLS algorithms. On the one hand, relation (A.1) holds for the ELS algorithm in the
ARMAX framework [3], [11], [15]. In addition, by Theorem 1 of Lai and Wei [19],
[20], we also have

n∑
k=1

‖ Φk −Ψk ‖2= O(log sn) a.s.(D.1)

If ε has finite conditional moment of order α>2, we can show as in Appendix A that
‖ Φn ‖2=O(sβn) with 2α−1 < β < 1. Hence, we find by (A.1) and (33) that

n∑
k=1

‖ πk ‖2= o(sβn log sn) a.s.,(D.2)

n∑
k=1

‖ Xk+1 ‖2= o(sβn log sn) +O(n) a.s.(D.3)

Finally, (D.1) together with (D.3) imply that sn=o(sn) + O(n), so sn=O(n). Con-
sequently, we find by (D.2) that

n∑
k=1

‖ πk ‖2= o(n) a.s.(D.4)

We now recall that the reference trajectory x satisfies (13). Therefore, exactly as in
Appendix A, (33), (D.1), and (D.4) imply the convergence (36) for the ELS algo-
rithm. On the other hand, concerning the WLS algorithm, relation (B.1) holds in the
ARMAX framework [4], [5]. In addition, we also have, by Theorem 1 of Bercu [5],

∞∑
n=1

an ‖ Φn −Ψn ‖2< +∞ a.s.(D.5)

As a−1
n =(log sn)1+γ with γ>0, we find by (33), (B.2), and (D.5) together with Kro-

necker’s lemma that sn=o(sn) + O(n), so sn=O(n). Consequently, we immediately
obtain by (B.2) that

n∑
k=1

‖ πk ‖2= o(n) a.s.(D.6)

Therefore, (33), (D.5), and (D.6) imply the convergence (36) for the WLS algorithm.
Finally, via (B.6)–(B.8), we also find the convergence (37) for the WLS algorithm,
completing the proof of Lemma 3.1. We now prove Theorems 3.3 and 3.4. We
can easily switch to the continually disturbed tracking situation. Indeed, as ξ is
an exogenous noise that satisfies the strong law of large numbers, we prove by (50)
the convergences (53) and (56) exactly as in Lemma 3.1. Furthermore, since the
matrix H is positive definite, we find for the ELS algorithm that n=O(λminSn), and
for the WLS algorithm, that nan = O(λminSn(a)). Finally, as the relations (A.1),
(A.11) and (B.1), (B.5) hold in the ARMAX framework, Theorems 3.3 and 3.4 are
established.
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Appendix E.
Proof of Theorem 3.5. We finally prove Theorem 3.5 for both ELS and WLS

algorithms. On the one hand, for the ELS algorithm, by (1) and (2), we have

Sn−1(θ̂n − θ) = Mn −Rn−1θ,(E.1)

Mn = M0 +
n∑
k=1

Φk−1ε
t
k, Rn =

n∑
k=0

Φk(Φk −Ψk)t(E.2)

with M0 = S(θ̂0 − θ). In order to study the remainder Rn, it is enough by (D.1) to
work on

Pn =
n∑
k=0

Xkε̌
t
k, Qn =

n∑
k=0

εkε̌
t
k,(E.3)

where ε̌n = ε̂n − εn. The first equality of (4) can be rewritten as

ε̌n+1 = (1− fn)πn − fnεn+1(E.4)

with fn = ΦtnS
−1
n Φn. By (A.1) and (E.4) together with Chow’s lemma [23], we have

the almost sure convergence

1
logn

n∑
k=0

εkε̌
t
k −→ −δΓ.(E.5)

Therefore, we immediately obtain Qn = o(
√
n) a.s. In addition, by (A.1), we also

have ∥∥∥∥∥
n∑
k=1

πk−1ε̌
t
k

∥∥∥∥∥ = O(logn) a.s.(E.6)

Finally, as the trajectory x satisfies relation (59), we can conclude by (50), (A.1), and
the Cauchy–Schwarz inequality that Pn=o(

√
n), so Rn=o(

√
n) a.s. Lemmas C.1 and

C.2 together with (53) lead to (61) and (62) for the ELS algorithm. On the other
hand, for the WLS algorithm, by (1) and (2), we have

Sn−1(a)(θ̂n − θ) = Mn(a)−Rn−1(a)θ,(E.7)

Mn(a) =M0+
n∑
k=1

ak−1Φk−1ε
t
k, Rn(a) =

n∑
k=0

akΦk(Φk −Ψk)t(E.8)

with M0 =S(θ̂0 − θ). Set

Pn(a) =
n∑
k=0

akXkε̌
t
k, Qn(a) =

n∑
k=0

akεkε̌
t
k.(E.9)

The first equality of (4) can be rewritten as

ε̌n+1 = (1− fn(a))πn − fn(a)εn+1(E.10)

with fn(a)=anΦtnS
−1
n (a)Φn. The main property of the weighted sequence a=(an) is

that
∞∑
n=1

anfn(a) < +∞ a.s.(E.11)
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Therefore, as a=(an) is nonincreasing, we find by (B.1), (E.10), and (E.11) that∥∥∥∥∥
n∑
k=0

akεkε̌
t
k

∥∥∥∥∥ = o((logn)1+γ) a.s.,(E.12)

so Qn(a) = o(
√
cn) a.s. with cn = n/(logn)2+2γ . In addition, by (B.1) and (D.5), as

fn(a) tends a.s. towards 0,∥∥∥∥∥
n∑
k=1

πk−1ε̌
t
k

∥∥∥∥∥ = O(1) a.s.(E.13)

Finally, as the trajectory x satisfies relation (60), we can conclude by (50), (B.1),
and the Cauchy–Schwarz inequality that Pn(a) = o(

√
cn), so Rn(a) = o(

√
cn) a.s.

Lemmas C.1 and C.2, together with (56), lead to (61) and (62) for the WLS algorithm,
completing the proof of Theorem 3.5.
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