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Abstract

We establish new almost sure asymptotic properties for martingale transforms. It enables us
to deduce the convergence of moments in the almost sure central limit theorem for martingales.
Several statistical applications on the asymptotic behavior of stochastic regression models are
also provided.
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1. Introduction

Let (�n) be a sequence of independent and identically distributed random variables
with E[�n] = 0, E[�2n] = �2 and de5ne the empirical measures

Gn =
1

log n

n∑
k=1

1
k
�Sk =

√
k with Sn =

n∑
k=1

�k :

The celebrated almost sure central limit theorem (ASCLT) states that, with proba-
bility one, Gn ⇒ G where G stands for the standard N(0; �2) distribution. It was
simultaneously established by Brosamler (1988) and Schatte (1988, 1991) and in the
present form by Lacey and Phillip (1990). In other words, for any bounded continuous
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real function h

lim
n→∞

1
log n

n∑
k=1

1
k
h
(
Sk√
k

)
=
∫
R
h(x) dG(x) a:s: (1.1)

We also refer the reader to Berkes and CsAaki (2001) for a remarkable universal AS-
CLT covering a large class of limit theorems for partial sums, extremes, empirical
distribution functions and local times associated with (�n).
One might wonder if convergence (1.1) holds for unbounded functions h. Schatte

(1991) has shown that (1.1) is true with h(x) = exp(ax2) and a¡ 1=4. More recently,
Ibragimov and Lifshits (1998, 1999) proved that (1.1) holds as soon as the integral
on the right of (1.1) is 5nite together with a mild regularity assumption on h. On the
other hand, we also know from the important contribution of Chaabane (1996, 2001)
and Chaabane and Maaouia (2000) and Lifshits (2001, 2002) that the ASCLT holds in
the martingale framework. More precisely, let (�n) be a martingale diCerence sequence
adapted to an appropriate 5ltration F = (Fn) and let (�n) be a sequence of random
variables adapted to F. We de5ne the real martingale transform (Mn) by

Mn =
n∑

k=1

�k−1�k :

We also de5ne the explosion coeDcient associated with (�n) by

fn =
�2n
sn

with sn =
n∑

k=0

�2k :

In all the sequel, we assume that (sn) increases a.s. to in5nity. A simpli5ed version of
the ASCLT for martingales (Chaabane, 1996) is as follows.

Theorem 1. Assume that (�n) is a martingale di7erence sequence such that E[�2n+1|
Fn] = �2 a.s. and satisfying for some a¿ 2

sup
n¿0

E[|�n+1|a|Fn]¡∞ a:s: (1.2)

In addition, assume that for some b¿ 1
∞∑
n=1

fb
n ¡∞ a:s: (1.3)

Then, (Mn) satis:es an ASCLT so that for any bounded continuous real function h

lim
n→∞

1
log sn

n∑
k=1

fkh
(

Mk√
sk−1

)
=
∫
R
h(x) dG(x) a:s: (1.4)

Similarly to (1.1), a natural question is whether or not convergence (1.4) holds for
unbounded functions h. It was already established by formula (2.4) of Wei (1987) that
under the moment condition (1.2), if the explosion coeDcient fn tends to zero a.s.,
then

lim
n→∞

1
log sn

n∑
k=1

fk

(
M 2
k

sk−1

)
= �2 a:s: (1.5)
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Consequently, (1.4) is true with h(x) = x2. The purpose of this paper is to show that
under a suitable additional moment assumption on (�n), convergence (1.4) holds for
any functions h such that |h(x)|6 x2p with p¿ 1. Several statistical applications on the
asymptotic behavior of stochastic regression models are also provided. Finally, a recent
application on the adaptive control of parametric nonlinear autoregressive models can
be found in Bercu and Portier (2002).
The paper is organized as follows. In Section 2, we establish new almost sure

asymptotic properties for powers of martingale transforms. Moreover, if the explosion
coeDcient fn tends to zero a.s., we prove the convergence of moments in the ASCLT
for martingales. We also propose similar results when the explosion coeDcient fn
converges a.s. to a positive random variable. Statistical applications are developed in
Section 4 and all technical proofs are collected in Sections 3 and 5.

2. Main results

We 5rst propose new almost sure asymptotic properties for powers of martingales
transforms generalizing a well-known strong law due to Neveu (1975) and Lai and Wei
(1982). One can observe that (Mn) is a martingale transform whereas it is not neces-
sarily a martingale except when (�n) and (�n) are both square integrable. In fact, all
locally square integrable real martingales can be seen as particular martingale trans-
forms. For any integer p¿ 1, set

vn(p) =
spn − spn−1

spn
:

Theorem 2. Assume that (�n) is a martingale di7erence sequence such that for some
integer p¿ 1

sup
n¿0

E[�2pn+1|Fn]¡∞ a:s: (2.1)

Then, for any �¿ 0

M 2p
n = o (spn−1(log sn−1)

1+�) a:s: (2.2)
∞∑
n=1

vn(p)
(log sn)1+�

(
M 2
n

sn−1

)p
¡∞ a:s: (2.3)

Moreover, assume that for some a¿ 2p

sup
n¿0

E[|�n+1|a|Fn]¡∞ a:s: (2.4)

Then

M 2p
n =O(spn−1 log sn−1) a:s: (2.5)

n∑
k=1

vk(p)
(
M 2
k

sk−1

)p
=O(log sn) a:s: (2.6)



160 B. Bercu / Stochastic Processes and their Applications 111 (2004) 157–173

Remark. On the one hand, in the particular case p = 1, the almost sure properties
given above are exactly the scalar version of Theorem 1.3.24 of DuJo (1997), which
is at the core of many proofs concerning the study of the asymptotic behavior of linear
regression models. On the other hand, formula (2.30) of Wei (1987) implies that under
(2.1)

M 2p
n = o (spn−1(log sn−1)

�) a:s: (2.7)

with �¿ 1 which is exactly formula (2.2). However, we assume here that p is a
positive integer while p¿ 1 can be a real number in Wei’s result. Nevertheless, the
proof of (2.7) is totally diCerent from that of (2.2) and (2.5) as it mainly relies on the
Burkholder–Davis–Gundy inequality. Finally, the most important results of Theorem 2
lie in (2.3) and (2.6) as we shall see below.

Theorem 3. Assume that (�n) is a martingale di7erence sequence such that
E[�2n+1|Fn] = �2 a.s. and satisfying, for some integer p¿ 1, the moment condi-
tion (2.4). In addition, assume that the explosion coe;cient fn tends to zero a.s.
Then

lim
n→∞

1
log sn

n∑
k=1

fk

(
M 2
k

sk−1

)p
=
�2p(2p)!
2pp!

a:s: (2.8)

A straightforward application of Theorem 3 is as follows.

Corollary 4. Assume that (�n) is a martingale di7erence sequence such that
E[�2n+1|Fn] = �2 a.s. and satisfying, for some integer p¿ 1, the moment condition
(2.4). In addition, assume that (1.3) holds. Then, for any continuous real function h
such that |h(x)|6 x2p, we have

lim
n→∞

1
log sn

n∑
k=1

fkh
(

Mk√
sk−1

)
=
∫
R
h(x) dG(x) a:s: (2.9)

Theorem 3 establishes the convergence of moments in the ASCLT for martingales. It
requires that the explosion coeDcient fn tends to zero a.s. One might wonder whether
or not a similar convergence holds when fn converges a.s. to a positive random variable
f and it is the purpose of the following result to show that this is the case. First of
all, for any integer p¿ 1, set

�n(p) = E[�pn+1|Fn]:

Theorem 5. Assume that (�n) is a martingale di7erence sequence satisfying, for some
integer p¿ 1, the moment condition (2.4). In addition, assume that for any 26
q6 2p

lim
n→∞ �n(q) = �(q) a:s: (2.10)
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where �(q)=0 if q is odd. If the explosion coe;cient fn converges a.s. to a random
variable f with 0¡f¡ 1, then

lim
n→∞

1
n

n∑
k=1

(
M 2
k

sk−1

)p
= l(p;f) a:s: (2.11)

where l(0; f) = 1 and, for p¿ 1, l(p;f) is given by the recurrence equation

l(p;f) =
1

1− (1− f)p

p∑
k=1

C2k2pf
k(1− f)p−k�(2k)l(p− k; f):

Corollary 6. For any integer p¿ 1, l(p;f) does not depend upon the random vari-
able f if and only if, for all 16 k6p, the moments �(2k) coincide with those of an
N(0; �2) random variable where �(2)=�2. In this particular case, the limits in (2.8)
and (2.11) are identical

l(p;f) = l(p) =
�2p(2p)!
2pp!

:

3. Proofs

3.1. Proof of Theorem 2

We shall prove Theorem 2 by induction on the power p¿ 1. First of all, Theorem 2
is already established for p=1 in DuJo (1997), Lai and Wei (1982) and Neveu (1975).
Next, let p¿ 2 and assume that Theorem 2 holds for any power q with 16 q6p−1.
For n¿ 0, as Mn+1 =Mn + �n�n+1,

M 2p
n+1 =

2p∑
k=0

Ck
2p�

k
n�
k
n+1M

2p−k
n : (3.1)

Moreover, for any 06 k6 2p, set

’n(k) = s−p
n �knM

2p−k
n :

Via a standard truncation argument (Wei, 1987), we can assume without loss of gen-
erality that each ’n(k) is a bounded random variable. In addition, we can also assume
supn �n(2p)6C a.s. for some constant C¿ 1. Denote

Vn =
M 2p
n

spn−1
and Wn =

�n(2p)�
2p
n

spn
:

It immediately follows from (3.1) that for any n¿ 1

E[Vn+1|Fn]6Vn − An + Bn +Wn (3.2)

with

An = vn(p)s
−p
n−1M

2p
n and Bn =

2p−1∑
k=2

Ck
2p|�n(k)’n(k)|:
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Let (an) be the positive decreasing sequence given by a−1n = (log sn)1+� with �¿ 0.
On the one hand, since �2n6 sn, we have

∞∑
n=1

anWn¡∞ a:s: (3.3)

On the other hand, in order to use the Robbins–Siegmund theorem (see e.g.
DuJo, 1997, p. 18), we claim that

∞∑
n=1

anBn ¡∞ a:s: (3.4)

In fact, one can easily see from the HOolder inequality that each |�n(k)|6C a.s.
Moreover, for any integer q¿ 1, we have sqn − sqn−1¿�2rn s

q−r
n so that vn(q)¿�2rn s

−r
n

with 16 r6 q. Consequently, we obtain from the induction assumption that for any
16 q6p− 1 and 16 r6 q

∞∑
n=1

an�2rn M
2q
n

sq+rn
¡∞ a:s: (3.5)

We shall apply (3.5) in the three following cases for proving (3.4).
Case 1: Let 26 k6 2(p − 1) with k even. We can 5nd 16 q6p − 1 such that

k = 2(p− q). Then, as �kn6�2ns
p−q−1
n , we obtain from (3.5) with r = 1 that a.s.

∞∑
n=1

an|�knM 2p−k
n |

spn
6

∞∑
n=1

an�2nM
2q
n

sq+1n
¡∞ (3.6)

Case 2: Let 36 k6 2p−3 with k odd. First, assume that k6p−1. We can choose
26 q6p− 1 such that k =2(p− q) + 1. Then, it follows from the Cauchy–Schwarz
inequality and (3.5) with 2r = k + 1 that a.s.( ∞∑

n=1

an|�knM 2p−k
n |

spn

)2
6

∞∑
n=1

an�2rn M
2q
n

sq+rn

∞∑
n=1

an�
2(r−1)
n M 2(q−1)

n

sq+r−2n
¡∞ (3.7)

Next, assume that p6 k6 2p− 3. We obviously have
∞∑
n=1

an|�knM 2p−k
n |

spn
6

∞∑
n=1

an|�2p−k
n M 2p−k

n |
s2p−k
n

a:s:

Hence, as before, we 5nd that (3.7) also holds with r = q.
Case 3: Let k = 2p− 1. We have a.s.( ∞∑

n=1

an|�2p−1n Mn|
spn

)2
6

( ∞∑
n=1

an|�3nMn|
s2n

)2
6

∞∑
n=1

an�2nM
2
n

s2n

∞∑
n=1

an�4n
s2n

¡∞ (3.8)

Therefore, (3.4) follows from the conjunction of (3.6), (3.7) and (3.8). Finally, as
an=o (1) a.s., we obtain from (3.2), (3.3), (3.4) together with the Robbins–Siegmund
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theorem that an−1Vn = o (1) a.s. and
∞∑
n=1

anAn ¡∞ a:s: (3.9)

which completes the proof of (2.2) and (2.3). It now remains to prove (2.5) and (2.6).
One can deduce from (3.1) that for any n¿ 1

Vn+1 +An = V1 +Bn+1 +Wn+1 (3.10)

where

An =
n∑

k=1

vk(p)s
−p
k−1M

2p
k ; Wn+1 =

n∑
k=1

s−p
k �2pk �

2p
k+1;

Bn+1 =
2p−1∑
l=1

Cl
2pBn+1(l) with Bn+1(l) =

n∑
k=1

’k(l)�lk+1:

On the one hand, (2.4) together with Chow’s lemma (see e.g. DuJo, 1997, p. 22)
imply that a.s.

Wn+1 = O (Fn(p)) with Fn(p) =
n∑

k=1

fp
k :

In addition, by the elementary inequality x6 − log(1 − x) with 0¡x¡ 1, we de-
duce that fp

n 6fn6 − log(1 − fn) so that f
p
n 6 log sn − log sn−1. Consequently,

Fn(p)6 log sn which ensures that

Wn+1 = O (log sn) a:s: (3.11)

On the other hand, we claim that

|Bn+1|=O(log sn) a:s: (3.12)

In order to prove relation (3.12), we have to show that for any 16 l6 2p − 1,
|Bn+1(l)|=O(log sn) a.s. First of all, split Bn+1(l) into two terms, Bn+1(l)=Cn+1(l)+
Dn(l) with

Cn+1(l) =
n∑

k=1

’k(l)ek+1(l) and Dn(l) =
n∑

k=1

’k(l)�k(l)

where en+1(l) = �ln+1 − �n(l). For any 16 l6p, one can easily deduce from (2.2)
and (2.3) together with Kronecker’s lemma that, for all �¿ 0,

%n(l) =
n∑

k=1

|’k(l)|2 = o ((log sn)d+�) a:s:

with d=(2p− 1)=p. Consequently, by virtue of the standard strong law of large num-
bers for martingales, we obtain that |Cn+1(l)|2 =O (%n(l)log %n(l)) so that |Cn+1(l)|2 =
o ((log sn)d+� log2 sn) a.s. Since d¡ 2, it implies that, for any 16 l6p, Cn+1(l) =
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o (log sn) a.s. Moreover, for any p+ 16 l6 2p− 1, we 5nd via Chow’s lemma that
either (Cn+1(l)) converges a.s. or Cn+1(l) = o ('n(l)) a.s. where

'n(l) =
n∑

k=1

|’k(l)|� =
n∑

k=1

fp
k

(
M 2
k

sk

)p(�−1)

with � = 2p=l. One can observe that we always have 1¡�¡ 2. Therefore, it fol-
lows from the HOolder inequality together with the induction assumption that 'n(l) =
O (log sn) a.s. which leads to Cn+1(l) = o (log sn) a.s. Consequently, we infer that for
any 16 l6 2p− 1

Cn+1(l) = o (log sn) a:s: (3.13)

In order to prove (3.12), it remains to show that for any 16 l6 2p− 1
|Dn(l)|=O(log sn) a:s: (3.14)

We shall proceed as in the proof of (3.4). Similarly to (3.5), we deduce from the
induction assumption that for any 16 q6p− 1 and 16 r6 q

n∑
k=1

�2rk M
2q
k

sq+rk

=O(log sn) a:s: (3.15)

We shall apply (3.15) in the three following cases for proving (3.14).
Case 1: Let 26 l6 2(p − 1) with l even. We can 5nd 16 q6p − 1 such that

l= 2(p− q). Then, as �lk6�2ks
p−q−1
k , we obtain from (3.15) with r = 1 that a.s.

|Dn(l)|=O
(

n∑
k=1

�2kM
2q
k

sq+1k

)
=O(log sn): (3.16)

Case 2: Let 36 l6 2p−3 with l odd. One can note that Dn(1)=0 since �n(1)=0 a.s.
Hence, we can take l¿ 3. First, assume that l6p−1. We can choose 26 q6p−1
such that l= 2(p− q) + 1. Then, it follows from the Cauchy–Schwarz inequality and
(3.15) with 2r = l+ 1 that a.s.

|Dn(l)|=O
(

n∑
k=1

�2rk M
2q
k

sq+rk

n∑
k=1

�2(r−1)k M 2(q−1)
k

sq+r−2k

)1=2
= O (log sn): (3.17)

Next, assume that p6 l6 2p− 3. We obviously have

|Dn(l)|=O
(

n∑
k=1

|�2p−l
k M 2p−l

k |
s2p−l
k

)
a:s:

Hence, we obtain that (3.17) also holds with r = q.
Case 3: Let l= 2p− 1. We have a.s.

|Dn(l)|=O
(

n∑
k=1

|�3kMk |
s2k

)
=O

(
n∑

k=1

�2kM
2
k

s2k

n∑
k=1

�4k
s2k

)1=2
= O (log sn): (3.18)

Consequently, (3.14) follows from the conjunction of (3.16), (3.17) and (3.18) and
it immediately implies (3.12). Finally, we 5nd from (3.10), (3.11) and (3.12) that
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Vn+1 = O (log sn) a.s. and An = O(log sn) a.s. which completes the proof of
Theorem 2.

3.2. Proof of Theorem 3

We shall use the same notations as those in the proof of Theorem 2. First of all, it
immediately follows from (1.5) that Theorem 3 is true for p=1. Next, let p¿ 2 and
assume that Theorem 3 holds for any power q with 16 q6p− 1. On the one hand,
via (2.7), we clearly have Vn+1 = o (log sn) a.s. On the other hand, as the explosion
coeDcient fn tends to zero a.s., we obtain that Fn(p) = o (log sn) a.s. which ensures
that Wn+1 = o (log sn) a.s. Furthermore, we already saw from (3.13) that for any
16 l6 2p − 1, Cn+1(l) = o (log sn) a.s. In addition, it is not hard to see from the
induction assumption that for any 36 l6 2p− 1, Dn(l) = o (log sn) a.s. We are now
in a position to prove (2.8). One can observe that

Dn(2) = �2
n∑

k=1

fk

(
M 2
k

sk

)p−1
:

As fn tends to zero, sn is a.s. equivalent to sn−1. Thus, we deduce from the induction
assumption that a.s.

lim
n→∞

1
log sn

Dn(2) = �2l(p− 1) with l(p) =
�2p(2p)!
2pp!

: (3.19)

Hence, we obtain from (3.19) that

lim
n→∞

1
log sn

Bn+1 = C22p�
2l(p− 1) = pl(p) a:s: (3.20)

Consequently, we 5nd from (3.10) that

lim
n→∞

1
log sn

An = pl(p) a:s: (3.21)

We recall that

An =
n∑

k=1

vk(p)
(
M 2
k

sk−1

)p
(3.22)

with

vn(p) =
spn − spn−1

spn
= fn

p−1∑
q=0

(
sn−1
sn

)p−1−q

:

Hereafter, as vn(p) is a.s. equivalent to pfn, convergence (2.8) follows from (3.21)
and (3.22).

3.3. Proof of Theorem 5

We also prove Theorem 5 by induction on the power p¿ 1. As before, Theorem
5 is already established for p = 1 by formula (2.3) of Wei (1987). Next, let p¿ 2
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and assume that Theorem 5 holds for any power q with 16 q6p−1. Recall that we
have the decomposition

Vn+1 +An = V1 +Bn+1 +Wn+1: (3.23)

On the one hand, as the explosion coeDcient fn converges a.s. to f, sn−1=sn tends a.s.
to 1−f and log sn is a.s. equivalent to −nlog(1−f). Consequently, we deduce from
(2.7) that Vn+1 = o (n) a.s. On the other hand, it follows from Chow’s lemma that

lim
n→∞

1
n
Wn+1 = fp�(2p) a:s: (3.24)

Moreover, we already saw that for any 16 l6 2p − 1, Cn+1(l) = o (n) a.s. which
implies that a.s.

Bn+1 =
2p−1∑
l=2

Cl
2pDn(l) + o (n) with Dn(l) =

n∑
k=1

’k(l)�k(l):

We shall now study the asymptotic behavior of Dn(l) in the two following cases.
Case 1: Let 26 l6 2(p − 1) with l even. We can 5nd 16 q6p − 1 such that

l= 2(p− q). Notice that Dn(l) can be rewritten as

Dn(l) =
n∑

k=1

�k(2(p− q))fp−q
k

(
sk−1
sk

)q( M 2
k

sk−1

)q
;

it follows from (2.10) together with the induction assumption that

lim
n→∞

1
n
Dn(l) = �(2(p− q))fp−q(1− f)ql(q; f) a:s: (3.25)

Case 2: Let 36 l6 2p− 1 with l odd. As �n(l) tends a.s. to zero,

|Dn(l)|=O(1) + o
(

n∑
k=1

|’k(l)|
)

a:s:

In addition, via the same arguments as in the proof of (3.14), we 5nd that

n∑
k=1

|’k(l)|=O(n) a:s:

which immediately ensures that Dn(l) = o (n) a.s. Therefore, we deduce from the con-
junction of (3.23), (3.24) and (3.25) that

lim
n→∞

1
n
An =

p∑
k=1

C2k2p�(2k)f
k(1− f)p−kl(p− k; f) a:s: (3.26)

Finally, as vn(p) converges a.s. to 1 − (1 − f)p, we infer (2.11) from (3.22) and
(3.26), which completes the proof of Theorem 5.
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3.4. Proof of Corollary 6

First of all, Corollary 6 is clearly true for p= 1 as l(1; f) = �(2) = �2. On the one
hand, assume that for any 26 k6p, �(2k) = l(k). We have by induction

l(p;f) =
1

1− (1− f)p

( p∑
k=1

C2k2pf
k(1− f)p−k �

2k(2k)!
2kk!

l(p− k; f)

)
;

=
1

1− (1− f)p

(
�2p(2p)!
2p

p∑
k=1

fk(1− f)p−k

k!(p− k)!

)
;

=
1

1− (1− f)p

(
l(p)

p∑
k=1

Ck
pf

k(1− f)p−k

)
= l(p):

On the other hand, assume that l(p;f) does not depend upon the random variable
f. For any p¿ 1, as l(p;f) is a continuous function of f, we necessarily have
l(p;f) = l(p; 1) = �(2p). Moreover, after some tedious calculation, we can prove the
expansion

l(p;f) = l(p) +
p∑
k=2

Pp;k(f)�k (3.27)

with �k=�(2k)−l(k), where the rational functions Pp;k(f) may be explicitly calculated.
For example,

Pp;p(f) =
fp

1− (1− f)p
;

Pp;p−1(f) =
C22pl(1)

1− (1− f)p
[f(1− f)p−1Pp−1;p−1(f) + fp−1(1− f)]:

It remains to show that for any 26 k6p, �k = 0. We shall only carry out the proof
that �p=0 inasmuch as the rest of the proof follows essentially the same arguments than
those for �p. First, for p=2, one can easily see that (3.27) reduces to f(1−f)�2 = 0
which immediately implies that �2 = 0. Next, for p¿ 3, we deduce from (3.27) that

(1− fp − (1− f)p)�p =
p−1∑
k=2

(1− (1− f)p)Pp;k(f)�k :

Consequently, dividing this identity by f(1− f), we 5nd that

Qp(f)�p =
p−1∑
k=2

Rp;k(f)�k (3.28)

where

Qp(f) =
1− fp − (1− f)p

f(1− f)
=

p−2∑
k=0

Ck+1
p fk(1− f)p−2−k
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and the rational functions Rp;k(f)=(f(1−f))−1(1−(1−f)p)Pp;k(f) may be explicitly
calculated. For example,

Rp;p−1(f) = C22pl(1)[(1− f)p−2Pp−1;p−1(f) + fp−2]:

The key point here is that Qp(0) = p whereas Rp;k(0) = 0. Hence, the constant term
in relation (3.28) is p�p which ensures that �p = 0.

4. Statistical applications

Consider the stochastic regression model given, for all n¿ 1, by

Xn = ,�n−1 + �n (4.1)

where Xn, �n, and �n are the observation, the regression variable and the driven noise
of the system, respectively. Assume that (�n) is a martingale diCerence sequence such
that E[�2n+1|Fn] = �2 a.s. In order to estimate the unknown real parameter ,, we use
the least-squares estimator

,̂n = s−1n−1

n∑
k=1

�k−1Xk where sn =
n∑

k=0

�2k :

It immediately follows from (4.1) that sn−1(,̂n − ,) =Mn with

Mn =
n∑

k=1

�k−1�k :

Hence, (4.1) can be rewritten as

Xn − ,̂n−1�n−1 = -n−1 + �n (4.2)

with -n =−s−1n−1�nMn. If (�n) satis5es the moment condition (1.2) and

.n =
1
n

n∑
k=1

�2k ;

then .n converges a.s. to �2. First of all, we assume that (sn) increases a.s. to in5nity
and that the explosion coeDcient fn tends to zero a.s. which leads to log sn = o (n)
a.s. Convergence (1.5) clearly implies that

lim
n→∞

1
log sn

n∑
k=1

-2k = �2 a:s: (4.3)

Consequently, we deduce from (4.2) and (4.3) that if

/n =
1
n

n∑
k=1

(Xk − ,̂k−1�k−1)2;

then /n is a strongly consistent estimator of �2 with

lim
n→∞

n
log sn

(/n − .n) = �2 a:s: (4.4)
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The purpose of this section is to propose strongly consistent estimators of higher-order
moments of (�n). Recall that for any q¿ 0, �n(q)=E[�qn+1|Fn] with �n(0)=1, �n(1)=0
and �n(2) = �2. Moreover, de5ne

/n(q) =
1
n

n∑
k=1

(Xk − ,̂k−1�k−1)q and .n(q) =
1
n

n∑
k=1

�qk :

Corollary 7. Assume that (�n) satis:es, for some integer p¿ 1, the moment condition
(2.4). If one can :nd some 26 q6 2p such that �n(q) = �(q) a.s., then /n(q) is a
strongly consistent estimator of �(q) with

(/n(q)− .n(q))2 = O
(
log sn
n

)
a:s: (4.5)

Remark. It follows from Chow’s lemma that if, for some p¿ 1, (�n) satis5es (2.4)
with a¿ 2p, then, for all 26 q6 2p, .n(q) converges a.s. to �(q) with the rate of
convergence

|.n(q)− �(q)|= o
(
n c

n

)
a:s:

where c is such that 2pa−1¡c¡ 1. Consequently, as soon as log sn =o (n c) a.s., we
infer from (4.5) that

(/n(q)− �(q))2 = o
(
n c

n

)
a:s:

Another application of Theorem 3 concerns the convergence in average of the estima-
tion error (,̂n − ,)2p.

Corollary 8. Assume that (�n) satis:es, for some integer p¿ 1, the moment condition
(2.4). Then

lim
n→∞

1
log sn

n∑
k=1

fks
p
k (,̂k − ,)2p =

�2p(2p)!
2pp!

a:s: (4.6)

In addition, assume that for some positive constant %

lim
n→∞

1
n
sn = % a:s: (4.7)

Then

lim
n→∞

1
log n

n∑
k=1

kp−1(,̂k − ,)2p =
�2p(2p)!
%p2pp!

a:s: (4.8)

Example 1. If we choose �n = Xn, we can rewrite (4.1) as the linear autoregressive
model

Xn = ,Xn−1 + �n: (4.9)
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On the one hand, in the stable case |,|¡ 1, fn → 0 a.s. and sn=n converges a.s.
to �2=(1 − , 2) so that log sn is a.s. equivalent to log n (see e.g. DuJo, 1997 and
Lai and Wei, 1983). Thus, (4.5) holds replacing log sn by log n. Moreover, it follows
from (4.8) that

lim
n→∞

1
log n

n∑
k=1

kp−1(,̂k − ,)2p =
(1− , 2)p(2p)!

2pp!
a:s:

On the other hand, in the unstable case |,| = 1, once again fn → 0 but sn=n2 di-
verges. However, by formula (3.5) of Wei, 1987, log sn is a.s. equivalent to 2 log n.
Consequently, (4.5) is true replacing log sn by log n.

Example 2. If we choose �n=f(Xn) where f is a known real function, we can rewrite
(4.1) as the parametric functional autoregressive model

Xn = ,f(Xn−1) + �n:

Assume that for all x in R,

c|x|+ d6 |f(x)|6 a|x|+ b

where 0¡a|,|¡ 1, b; c¿ 0 and d¿ 0 if c=0, d¿ 0 otherwise. One can easily check
that n=O(sn), fn → 0 and sn=O(n) so that log sn=O(log n) a.s which implies that
(4.5) holds replacing log sn by log n.
Hereafter, we assume that the explosion coeDcient fn converges a.s. to a random

variable f with 0¡f¡ 1. On the one hand, sn grows exponentially fast to in5nity
and the expression of l(p;f), given by Theorem 5, depends on all the moments �(2k)
with 16 k6p. Consequently, it is possible but rather intricated to estimate the even
moments of (�n) as in Corollary 7. On the other hand, even if sn grows exponentially
fast to in5nity, the estimator ,̂n is self-normalized. Therefore, we can propose a direct
application of Theorem 5 similar to Corollary 8.

Corollary 9. Assume that (�n) satis:es, for some integer p¿ 1, the moment condi-
tions (2.4) and (2.10). Then

lim
n→∞

1
n

n∑
k=1

spk−1(,̂k − ,)2p = l(p;f) a:s: (4.10)

In addition, assume that for some positive random variable %

lim
n→∞ (1− f)nsn = % a:s: (4.11)

Then

lim
n→∞

1
n

n∑
k=1

(,̂k − ,)2p

(1− f)kp
=

l(p;f)
%p(1− f)p

a:s: (4.12)

Example 3. Consider once again the linear autoregressive model given by (4.9). In
the explosive case |,|¿ 1, , −nXn converges a.s. and in mean square to the nonzero
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random variable

Y = X0 +
∞∑
k=1

, −k�k :

Hence, we directly obtain via Toeplitz’s lemma that fn → (, 2− 1)=, 2 a.s. and sn=, 2n
converges a.s. to , 2Y 2=(, 2 − 1) (see e.g. Bercu, 2001; DuJo, 1997 and Lai and Wei,
1983). Consequently, it follows from (4.12) that

lim
n→∞

1
n

n∑
k=1

(, k(,̂k − ,))2p =
(, 2 − 1)pl(p;f)

Y 2p
a:s:

5. Proofs of statistical results

5.1. Proof of Corollary 7

We already saw via (4.4) that Corollary 7 holds for q = 2. Next, let q¿ 3 and
assume that �n(q) = �(q) a.s. It follows from (4.2) that for any n¿ 1

n(/n(q)− .n(q)) = Pn−1(q) + Qn(q) (5.1)

where

Pn(q) =
n∑

k=0

-qk ;

Qn(q) =
q−1∑
l=1

Cl
qRn(l) with Rn(l) =

n−1∑
k=0

-q−l
k �lk+1:

As fn tends to zero, sn is a.s. equivalent to sn−1. Thus, we deduce from (2.8) that for
any 26 r6p

lim
n→∞

1
log sn

n∑
k=1

fk
-2rk
fr
k
=
�2r(2r)!
2rr!

a:s:

which implies that
n∑

k=0

-2rk = o (log sn) a:s: (5.2)

On the one hand, if q is even, we can 5nd 26 r6p such that q = 2r. Hence, we
immediately obtain from (5.2) that

Pn(q) = o (log sn) a:s: (5.3)

On the other hand, if q is odd, we also derive from (5.2) together with the Cauchy–
Schwarz inequality that (5.3) still holds. Next, via the same way that (3.12) is estab-
lished in the proof of Theorem 2, we 5nd that

|Qn(q)|2 = O (nlog sn) a:s: (5.4)

Consequently, (4.5) follows from (5.1), (5.3) and (5.4), which completes the proof of
Corollary 7.
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5.2. Proof of Corollary 8

As (4.6) is a straightforward application of (2.8), we only have to prove (4.8). For
any sequence (an), it is not hard to see that

n∑
k=1

ak�2k = an(sn − n%)− a1s0 + %
n∑

k=1

ak + rn (5.5)

where

rn =
n−1∑
k=1

(ak − ak+1)(sk − k%):

We shall now choose

an =
1
sn

M 2p
n

spn−1
=
spn−1 (,̂n − ,)2p

sn
:

On the one hand, (2.5) directly implies that an(sn − n%) = o (log sn) a.s. On the other
hand, proceeding exactly as in the proof of the second part of Theorem 2, we infer
that rn = o (log sn) a.s. Therefore, we deduce from (2.8) and (5.5) that a.s.

lim
n→∞

1
log sn

n∑
k=1

ak =
l(p)
%

with l(p) =
�2p(2p)!
2pp!

: (5.6)

Finally, we 5nd via Toeplitz’s lemma together with (4.7) and (5.6) that (4.8) holds,
which completes the proof of Corollary 8.
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