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Abstract

We study the asymptotic behavior of the least squares estimators of the unknown parameters
of general pth-order bifurcating autoregressive processes. Under very weak assumptions on
the driven noise of the process, namely conditional pair-wise independence and suitable mo-
ment conditions, we establish the almost sure convergence of our estimators together with the
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1 Introduction

Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive (AR) processes to
binary tree structured data. They were first introduced by Cowan and Staudte [2] for cell lineage
data, where each individual in one generation gives birth to two offspring in the next generation.
Cell lineage data typically consist of observations of some quantitative characteristic of the cells over
several generations of descendants from an initial cell. BAR processes take into account both inher-
ited and environmental effects to explain the evolution of the quantitative characteristic under study.

More precisely, the original BAR process is defined as follows. The initial cell is labelled 1, and the
two offspring of cell n are labelled 2n and 2n+ 1. Denote by Xn the quantitative characteristic of
individual n. Then, the first-order BAR process is given, for all n≥ 1, by

¨

X2n = a + bXn + ε2n,
X2n+1 = a + bXn + ε2n+1.

The noise sequence (ε2n,ε2n+1) represents environmental effects while a, b are unknown real
parameters with |b| < 1. The driven noise (ε2n,ε2n+1) was originally supposed to be independent
and identically distributed with normal distribution. However, two sister cells being in the same
environment early in their lives, ε2n and ε2n+1 are allowed to be correlated, inducing a correlation
between sister cells distinct from the correlation inherited from their mother.

Several extensions of the model have been proposed. On the one hand, we refer the reader to
Huggins and Basawa [10] and Basawa and Zhou [1; 15] for statistical inference on symmetric
bifurcating processes. On the other hand, higher order processes, when not only the effects of
the mother but also those of the grand-mother and higher order ancestors are taken into account,
have been investigated by Huggins and Basawa [10]. Recently, an asymmetric model has been
introduced by Guyon [5; 6] where only the effects of the mother are considered, but sister cells are
allowed to have different conditional distributions. We can also mention a recent work of Delmas
and Marsalle [3] dealing with a model of asymmetric bifurcating Markov chains on a Galton Watson
tree instead of regular binary tree.

The purpose of this paper is to carry out a sharp analysis of the asymptotic properties of the
least squares (LS) estimators of the unknown parameters of general asymmetric pth-order BAR
processes. There are several results on statistical inference and asymptotic properties of estimators
for BAR models in the literature. For maximum likelihood inference on small independent trees, see
Huggins and Basawa [10]. For maximum likelihood inference on a single large tree, see Huggins
[9] for the original BAR model, Huggins and Basawa [11] for higher order Gaussian BAR models,
and Zhou and Basawa [15] for exponential first-order BAR processes. We also refer the reader to
Zhou and Basawa [14] for the LS parameter estimation, and to Hwang, Basawa and Yeo [12] for
the local asymptotic normality for BAR processes and related asymptotic inference. In all those
papers, the process is supposed to be stationary. Consequently, Xn has a time-series representation
involving an holomorphic function. In Guyon [5], the LS estimator is also investigated, but the
process is not stationary, and the author makes intensive use of the tree structure and Markov
chain theory. Our goal is to improve and extend the previous results of Guyon [5] via a martingale
approach. As previously done by Basawa and Zhou [1; 14; 15] we shall make use of the strong
law of large numbers [4] as well as the central limit theorem [7; 8] for martingales. It will allow
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us to go further in the analysis of general pth-order BAR processes. We shall establish the almost
sure convergence of the LS estimators together with the quadratic strong law and the central limit
theorem.

The paper is organised as follows. Section 2 is devoted to the presentation of the asymmetric
pth-order BAR process under study, while Section 3 deals with the LS estimators of the unknown
parameters. In Section 4, we explain our strategy based on martingale theory. Our main results
about the asymptotic properties of the LS estimators are given in Section 5. More precisely, we shall
establish the almost sure convergence, the quadratic strong law (QSL) and the central limit theorem
(CLT) for the LS estimators. The proof of our main results are detailed in Sections 6 to 10, the more
technical ones being gathered in the appendices.

2 Bifurcating autoregressive processes

In all the sequel, let p be a non-zero integer. We consider the asymmetric BAR(p) process given, for
all n≥ 2p−1, by

(

X2n = a0 +
∑p

k=1 akX[ n
2k−1 ]

+ ε2n,

X2n+1 = b0 +
∑p

k=1 bkX[ n
2k−1 ]

+ ε2n+1,
(2.1)

where [x] stands for the largest integer less than or equal to x . The initial states {Xk, 1 ≤ k ≤
2p−1 − 1} are the ancestors while (ε2n,ε2n+1) is the driven noise of the process. The parameters
(a0, a1, . . . ap) and (b0, b1, . . . , bp) are unknown real numbers. The BAR(p) process can be rewritten
in the abbreviated vector form given, for all n≥ 2p−1, by

¨

X2n = AXn + η2n,
X2n+1 = BXn + η2n+1,

(2.2)

where the regression vector Xn = (Xn, X[ n
2
], . . . , X[ n

2p−1 ])
t , η2n = (a0+ε2n)e1, η2n+1 = (b0+ε2n+1)e1

with e1 = (1,0, . . . , 0)t ∈ Rp. Moreover, A and B are the p× p companion matrices

A=













a1 a2 · · · ap
1 0 · · · 0

0
... . . .

...
0 0 1 0













, B =













b1 b2 · · · ap
1 0 · · · 0

0
... . . .

...
0 0 1 0













.

This process is a direct generalization of the symmetric BAR(p) process studied by Huggins, Basawa
and Zhou [10; 14]. One can also observe that, in the particular case p = 1, it is the asymmetric
BAR process studied by Guyon [5; 6]. In all the sequel, we shall assume that E[X 8

k] < ∞ for all
1≤ k ≤ 2p−1− 1 and that matrices A and B satisfy the contracting property

β =max{‖A‖,‖B‖}< 1,

where ‖A‖= sup{‖Au‖, u ∈ Rp with ‖u‖= 1}.
As explained in the introduction, one can see this BAR(p) process as a pth-order autoregressive
process on a binary tree, where each vertex represents an individual or cell, vertex 1 being the
original ancestor, see Figure 1 for an illustration. For all n≥ 1, denote the nth generation by

Gn = {2n, 2n+ 1, . . . , 2n+1− 1}.
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Figure 1: The tree associated with the bifurcating auto-regressive process.

In particular, G0 = {1} is the initial generation and G1 = {2, 3} is the first generation of offspring
from the first ancestor. Let Grn

be the generation of individual n, which means that rn = log2(n).
Recall that the two offspring of individual n are labelled 2n and 2n+1, or conversely, the mother of
individual n is [n/2]. More generally, the ancestors of individual n are [n/2], [n/22], . . . , [n/2rn].
Furthermore, denote by

Tn =
n
⋃

k=0

Gk

the sub-tree of all individuals from the original individual up to the nth generation. It is clear
that the cardinality |Gn| of Gn is 2n while that of Tn is |Tn| = 2n+1 − 1. Finally, we denote by
Tn,p = {k ∈ Tn, k ≥ 2p} the sub-tree of all individuals up to the nth generation without Tp−1. One
can observe that, for all n≥ 1, Tn,0 = Tn and, for all p ≥ 1, Tp,p =Gp.

3 Least-squares estimation

The BAR(p) process (2.1) can be rewritten, for all n≥ 2p−1, in the matrix form

Zn = θ
t Yn+ Vn (3.1)

where

Zn =

�

X2n
X2n+1

�

, Yn =

�

1
Xn

�

, Vn =

�

ε2n
ε2n+1

�

,
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and the (p+ 1)× 2 matrix parameter θ is given by

θ =













a0 b0
a1 b1
...

...
ap bp













.

Our goal is to estimate θ from the observation of all individuals up to the nth generation that is
the complete sub-tree Tn. Each new generation Gn contains half the global available information.
Consequently, we shall show that observing the whole tree Tn or only generation Gn is almost the
same. We propose to make use of the standard LS estimator bθn which minimizes

∆n(θ) =
1

2

∑

k∈Tn−1,p−1

‖ Zk − θ t Yk ‖2 .

Consequently, we obviously have for all n≥ p

bθn = S−1
n−1

∑

k∈Tn−1,p−1

YkZ t
k , (3.2)

where the (p+ 1)× (p+ 1) matrix Sn is defined as

Sn =
∑

k∈Tn,p−1

YkY t
k =

∑

k∈Tn,p−1

�

1 Xt
k

Xk XkXt
k

�

.

In the special case where p = 1, Sn simply reduces to

Sn =
∑

k∈Tn

�

1 Xk
Xk X 2

k

�

.

In order to avoid useless invertibility assumption, we shall assume, without loss of generality, that
for all n ≥ p− 1, Sn is invertible. Otherwise, we only have to add the identity matrix Ip+1 to Sn. In

all what follows, we shall make a slight abuse of notation by identifying θ as well as bθn to

vec(θ) =





















a0
...

ap
b0
...

bp





















and vec(bθn) =























ba0,n
...
bap,n
bb0,n

...
bbp,n























.

The reason for this change will be explained in Section 4. Hence, we readily deduce from (3.2) that

bθn = (I2⊗ S−1
n−1)

∑

k∈Tn−1,p−1

vec
�

YkZ t
k

�

= (I2⊗ S−1
n−1)

∑

k∈Tn−1,p−1











X2k
XkX2k
X2k+1

XkX2k+1











,
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where ⊗ stands for the matrix Kronecker product. Consequently, it follows from (3.1) that

bθn− θ = (I2⊗ S−1
n−1)

∑

k∈Tn−1,p−1

vec
�

YkV t
k

�

= (I2⊗ S−1
n−1)

∑

k∈Tn−1,p−1











ε2k
ε2kXk
ε2k+1
ε2k+1Xk











. (3.3)

Denote by F= (Fn) the natural filtration associated with the BAR(p) process, which means that Fn
is the σ-algebra generated by all individuals up to the nth generation, Fn = σ{Xk, k ∈ Tn}. In all
the sequel, we shall make use of the five following moment hypotheses.

(H.1) One can find σ2 > 0 such that, for all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L2 with

E[εk|Fn] = 0 and E[ε2
k |Fn] = σ

2 a.s.

(H.2) It exists |ρ| < σ2 such that, for all n ≥ p− 1 and for all different k, l ∈ Gn+1 with [k/2] =
[l/2],

E[εkεl |Fn] = ρ a.s.

Otherwise, εk and εl are conditionally independent given Fn.

(H.3) For all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L4 and

sup
n≥p−1

sup
k∈Gn+1

E[ε4
k |Fn]<∞ a.s.

(H.4) One can find τ4 > 0 such that, for all n≥ p− 1 and for all k ∈Gn+1,

E[ε4
k |Fn] = τ

4 a.s.

and, for ν2 < τ4 and for all different k, l ∈Gn+1 with [k/2] = [l/2]

E[ε2
2kε

2
2k+1|Fn] = ν

2 a.s.

(H.5) For all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L8 with

sup
n≥p−1

sup
k∈Gn+1

E[ε8
k |Fn]<∞ a.s.

Remark 3.1. In contrast with [14], one can observe that we do not assume that (ε2n,ε2n+1) is a
sequence of independent and identically distributed bi-variate random vectors. The price to pay for
giving up this iid assumption is higher moments, namely assumptions (H.3) and (H.5). Indeed we need
them to make use of the strong law of large numbers and the central limit theorem for martingales.
However, we do not require any normality assumption on (ε2n,ε2n+1). Consequently, our assumptions
are much weaker than the existing ones in previous literature.
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We now turn to the estimation of the parameters σ2 and ρ. On the one hand, we propose to estimate
the conditional variance σ2 by

bσ2
n =

1

2|Tn−1|

∑

k∈Tn−1,p−1

‖ bVk ‖2=
1

2|Tn−1|

∑

k∈Tn−1,p−1

(bε2
2k + bε

2
2k+1) (3.4)

where for all n≥ p− 1 and for all k ∈Gn, bV t
k = (bε2k, bε2k+1) with







bε2k = X2k − ba0,n −
∑p

i=1 bai,nX[ k
2i−1 ]

,

bε2k+1 = X2k+1 − bb0,n −
∑p

i=1
bbi,nX[ k

2i−1 ]
.

One can observe that, on the above equations, we make use of only the past observations for the
estimation of the parameters. This will be crucial in the asymptotic analysis. On the other hand, we
estimate the conditional covariance ρ by

bρn =
1

|Tn−1|

∑

k∈Tn−1,p−1

bε2kbε2k+1. (3.5)

4 Martingale approach

In order to establish all the asymptotic properties of our estimators, we shall make use of a martin-
gale approach. It allows us to impose a very smooth restriction on the driven noise (εn) compared
with the previous results in the literature. As a matter of fact, we only assume suitable moment
conditions on (εn) and that (ε2n,ε2n+1) are conditionally independent, while it is assumed in [14]
that (ε2n,ε2n+1) is a sequence of independent identically distributed random vectors. For all n ≥ p,
denote

Mn =
∑

k∈Tn−1,p−1











ε2k
ε2kXk
ε2k+1
ε2k+1Xk











∈ R2(p+1).

Let Σn = I2⊗ Sn, and note that Σ−1
n = I2⊗ S−1

n . For all n≥ p, we can thus rewrite (3.3) as

bθn− θ = Σ−1
n−1Mn. (4.1)

The key point of our approach is that (Mn) is a martingale. Most of all the asymptotic results for
martingales were established for vector-valued martingales. That is the reason why we have chosen
to make use of vector notation in Section 3. In order to show that (Mn) is a martingale adapted
to the filtration F = (Fn), we rewrite it in a compact form. Let Ψn = I2 ⊗ Φn, where Φn is the
rectangular matrix of dimension (p+ 1)×δn, with δn = 2n, given by

Φn =

 

1 1 · · · 1

X2n X2n+1 · · · X2n+1−1

!

.
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It contains the individuals of generations Gn−p+1 up to Gn and is also the collection of all Yk, k ∈Gn.
Let ξn be the random vector of dimension δn

ξn =





























ε2n

ε2n+2
...

ε2n+1−2
ε2n+1
ε2n+3

...
ε2n+1−1





























.

The vector ξn gathers the noise variables of generation Gn. The special ordering separating odd and
even indices is tailor-made so that Mn can be written as

Mn =
n
∑

k=p

Ψk−1ξk.

By the same token, one can observe that

Sn =
n
∑

k=p−1

ΦkΦ
t
k and Σn =

n
∑

k=p−1

ΨkΨ
t
k.

Under (H.1) and (H.2), we clearly have for all n≥ 0, E[ξn+1|Fn] = 0 and Ψn is Fn-measurable. In
addition, it is not hard to see that for all n≥ 0, E[ξn+1ξ

t
n+1|Fn] = Γ⊗ Iδn

where Γ is the covariance
matrix associated with (ε2n,ε2n+1)

Γ =

 

σ2 ρ

ρ σ2

!

.

We shall also prove that (Mn) is a square integrable martingale. Its increasing process is given for
all n≥ p+ 1 by

<M>n=
n−1
∑

k=p−1

Ψk(Γ⊗ Iδk
)Ψt

k = Γ⊗
n−1
∑

k=p−1

ΦkΦ
t
k = Γ⊗ Sn−1.

It is necessary to establish the convergence of Sn, properly normalized, in order to prove the asymp-
totic results for the BAR(p) estimators bθn, bσ2

n and bρn. One can observe that the sizes of Ψn and ξn
are not fixed and double at each generation. This is why we have to adapt the proof of vector-valued
martingale convergence given in [4] to our framework.

5 Main results

We now state our main results, first on the martingale (Mn) and then on our estimators.
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Proposition 5.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→∞

Sn

|Tn|
= L a.s. (5.1)

where L is a positive definite matrix specified in Section 7.

This result is the keystone of our asymptotic analysis. It enables us to prove sharp asymptotic
properties for (Mn).

Theorem 5.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

M t
nΣ
−1
n−1Mn = O (n) a.s. (5.2)

In addition, we also have

lim
n→∞

1

n

n
∑

k=p

M t
kΣ
−1
k−1Mk = 2(p+ 1)σ2 a.s. (5.3)

Moreover, if (εn) satisfies (H.4) and (H.5), we have the central limit theorem

1
p

|Tn−1|
Mn

L−→N (0,Γ⊗ L). (5.4)

From the asymptotic properties of (Mn), we deduce the asymptotic behavior of our estimators. Our
first result deals with the almost sure asymptotic properties of the LS estimator bθn.

Theorem 5.2. Assume that (εn) satisfies (H.1) to (H.3). Then, bθn converges almost surely to θ with
the rate of convergence

‖ bθn− θ ‖2= O
�

log |Tn−1|
|Tn−1|

�

a.s. (5.5)

In addition, we also have the quadratic strong law

lim
n→∞

1

n

n
∑

k=1

|Tk−1|(bθk − θ)tΛ(bθk − θ) = 2(p+ 1)σ2 a.s. (5.6)

where Λ = I2⊗ L.

Our second result is devoted to the almost sure asymptotic properties of the variance and covariance
estimators bσ2

n and bρn. Let

σ2
n =

1

2|Tn−1|

∑

k∈Tn−1,p

(ε2
2k + ε

2
2k+1) and ρn =

1

|Tn−1|

∑

k∈Tn−1,p

ε2kε2k+1.

Theorem 5.3. Assume that (εn) satisfies (H.1) to (H.3). Then, bσ2
n converges almost surely to σ2.

More precisely,

lim
n→∞

1

n

∑

k∈Tn−1,p

(bε2k − ε2k)
2+ (bε2k+1− ε2k+1)

2 = 2(p+ 1)σ2 a.s. (5.7)
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lim
n→∞

|Tn|
n
(bσ2

n−σ
2
n) = 2(p+ 1)σ2 a.s. (5.8)

In addition, bρn converges almost surely to ρ

lim
n→∞

1

n

∑

k∈Tn−1,p

(bε2k − ε2k)(bε2k+1− ε2k+1) = (p+ 1)ρ a.s. (5.9)

lim
n→∞

|Tn|
n
(bρn−ρn) = 2(p+ 1)ρ a.s. (5.10)

Our third result concerns the asymptotic normality for all our estimators bθn, bσ2
n and bρn.

Theorem 5.4. Assume that (εn) satisfies (H.1) to (H.5). Then, we have the central limit theorem

p

|Tn−1|(bθn− θ)
L−→N (0,Γ⊗ L−1). (5.11)

In addition, we also have

p

|Tn−1|(bσ2
n−σ

2)
L−→N

�

0,
τ4− 2σ4+ ν2

2

�

(5.12)

and
p

|Tn−1|(bρn−ρ)
L−→N (0,ν2−ρ2). (5.13)

The rest of the paper is dedicated to the proof of our main results. We start by giving laws of large
numbers for the noise sequence (εn) in Section 6. In Section 7, we give the proof of Proposition 5.1.
Sections 8, 9 and 10 are devoted to the proofs of Theorems 5.2, 5.3 and 5.4, respectively. The more
technical proofs, including that of Theorem 5.1, are postponed to the Appendices.

6 Laws of large numbers for the noise sequence

We first need to establish strong laws of large numbers for the noise sequence (εn). These results
will be useful in all the sequel. We will extensively use the strong law of large numbers for locally
square integrable real martingales given in Theorem 1.3.15 of [4].

Lemma 6.1. Assume that (εn) satisfies (H.1) and (H.2). Then

lim
n→+∞

1

|Tn|

∑

k∈Tn,p

εk = 0 a.s. (6.1)

In addition, if (H.3) holds, we also have

lim
n→+∞

1

|Tn|

∑

k∈Tn,p

ε2
k = σ

2 a.s. (6.2)

and

lim
n→+∞

1

|Tn−1|

∑

k∈Tn−1,p−1

ε2kε2k+1 = ρ a.s. (6.3)
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Proof: On the one hand, let

Pn =
∑

k∈Tn,p

εk =
n
∑

k=p

∑

i∈Gk

εi .

We have
∆Pn+1 = Pn+1− Pn =

∑

k∈Gn+1

εk.

Hence, it follows from (H.1) and (H.2) that (Pn) is a square integrable real martingale with increas-
ing process

<P>n= (σ
2+ρ)

n
∑

k=p

|Gk|= (σ2+ρ)(|Tn| − |Tp−1|).

Consequently, we deduce from Theorem 1.3.15 of [4] that Pn = o(<P>n) a.s. which implies (6.1).
On the other hand, denote

Qn =
n
∑

k=p

1

|Gk|

∑

i∈Gk

ei ,

where en = ε2
n −σ

2. We have

∆Qn+1 =Qn+1−Qn =
1

|Gn+1|

∑

k∈Gn+1

ek.

First of all, it follows from (H.1) that for all k ∈Gn+1, E[ek|Fn] = 0 a.s. In addition, for all different
k, l ∈Gn+1 with [k/2] 6= [l/2],

E[ekel |Fn] = 0 a.s.

thanks to the conditional independence given by (H.2). Furthermore, we readily deduce from (H.3)
that

sup
n≥p−1

sup
k∈Gn+1

E[e2
k |Fn]<∞ a.s.

Therefore, (Qn) is a square integrable real martingale with increasing process

<Q>n ≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]

n
∑

j=p

1

|G j|
a.s.

≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]

n
∑

j=p

�1

2

� j
a.s.

≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]<∞ a.s.

Consequently, we obtain from the strong law of large numbers for martingales that (Qn) converges
almost surely. Finally, as (|Gn|) is a positive real sequence which increases to infinity, we find from
Lemma A.1 in Appendix A that

n
∑

k=p

∑

i∈Gk

ei = o(|Gn|) a.s.
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leading to
n
∑

k=p

∑

i∈Gk

ei = o(|Tn|) a.s.

as |Tn| − 1 = 2|Gn|, which implies (6.2). We also establish (6.3) in a similar way. As a matter of
fact, let

Rn =
n
∑

k=p

1

|Gk−1|

∑

i∈Gk−1

(ε2iε2i+1−ρ).

Then, (Rn) is a square integrable real martingale which converges almost surely, leading to (6.3). �

Remark 6.2. Note that via Lemma A.2

lim
n→+∞

1

|Gn|

∑

k∈Gn

ε2k = 0, lim
n→+∞

1

|Gn|

∑

k∈Gn

ε2k+1 = 0 a.s.

lim
n→+∞

1

|Gn|

∑

k∈Gn

ε2
2k = σ

2, lim
n→+∞

1

|Gn|

∑

k∈Gn

ε2
2k+1 = σ

2 a.s.

In fact, each new generation contains half the global available information, observing the whole tree Tn
or only generation Gn is essentially the same.

For the CLT, we will also need the convergence of higher moments of the driven noise (εn).

Lemma 6.3. Assume that (εn) satisfies (H.1) to (H.5). Then, we have

lim
n→+∞

1

|Tn|

∑

k∈Tn,p

ε4
k = τ

4 a.s.

and

lim
n→+∞

1

|Tn−1|

∑

k∈Tn−1,p−1

ε2
2kε

2
2k+1 = ν

2 a.s.

Proof : The proof is left to the reader as it follows essentially the same lines as the proof of
Lemma 6.1 using the square integrable real martingales

Qn =
n
∑

k=p

1

|Gk|

∑

i∈Gk

(ε4
i −τ

4)

and

Rn =
n
∑

k=p

1

|Gk−1|

∑

i∈Gk−1

(ε2
2iε

2
2i+1− ν

2).

Remark 6.4. Note that again via Lemma A.2

lim
n→+∞

1

|Gn|

∑

k∈Gn

ε4
2k = τ

4 and lim
n→+∞

1

|Gn|

∑

k∈Gn

ε4
2k+1 = τ

4 a.s.
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7 Proof of Proposition 5.1

Proposition 5.1 is a direct application of the two following lemmas which provide two strong laws
of large numbers for the sequence of random vectors (Xn).

Lemma 7.1. Assume that (εn) satisfies (H.1) and (H.2). Then, we have

lim
n→+∞

1

|Tn|

∑

k∈Tn,p

Xk = λ= a(Ip − A)−1e1 a.s. (7.1)

where a = (a0+ b0)/2 and A is the mean of the companion matrices

A=
1

2
(A+ B).

Lemma 7.2. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

1

|Tn|

∑

k∈Tn,p

XkXt
k = `, a.s. (7.2)

where the matrix ` is the unique solution of the equation

`= T +
1

2
(A`At + B`B t)

T = (σ2+ a2)e1et
1+

1

2
(a0(Aλet

1+ e1λ
tAt) + b0(Bλet

1+ e1λ
t B t))

with a2 = (a2
0 + b2

0)/2.

Proof : The proofs are given in Appendix A. �

Remark 7.3. We shall see in Appendix A that

`=
∞
∑

k=0

1

2k

∑

C∈{A;B}k
C T C t

where the notation {A; B}k means the set of all products of A and B with exactly k terms. For example,
we have {A; B}0 = {Ip}, {A; B}1 = {A, B}, {A; B}2 = {A2, AB, BA, B2} and so on. The cardinality of
{A; B}k is obviously 2k.

Remark 7.4. One can observe that in the special case p = 1,

lim
n→+∞

1

|Tn|

∑

k∈Tn

Xk =
a

1− b
a.s.

lim
n→+∞

1

|Tn|

∑

k∈Tn

X 2
k =

a2+σ2+ 2λab

1− b2
a.s.

where

ab =
a0a1+ b0 b1

2
, b =

a1+ b1

2
, b2 =

a2
1 + b2

1

2
.
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8 Proof of Theorems 5.1 and 5.2

Theorem 5.2 is a consequence of Theorem 5.1. The first result of Theorem 5.1 is a strong law of
large numbers for the martingale (Mn). We already mentioned that the standard strong law is
useless here. This is due to the fact that the dimension of the random vector ξn grows exponentially
fast as 2n. Consequently, we are led to propose a new strong law of large numbers for (Mn), adapted
to our framework.

Proof of result (5.2) of Theorem 5.1: For all n ≥ p, let Vn = M t
nΣ
−1
n−1Mn where we recall that

Σn = I2⊗ Sn, so that Σ−1
n = I2⊗ S−1

n . First of all, we have

Vn+1 = M t
n+1Σ

−1
n Mn+1 = (Mn+∆Mn+1)

tΣ−1
n (Mn+∆Mn+1),

= M t
nΣ
−1
n Mn+ 2M t

nΣ
−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1,

= Vn−M t
n(Σ

−1
n−1−Σ

−1
n )Mn+2M t

nΣ
−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1.

By summing over this identity, we obtain the main decomposition

Vn+1+An = Vp +Bn+1+Wn+1, (8.1)

where

An =
n
∑

k=p

M t
k(Σ

−1
k−1−Σ

−1
k )Mk,

Bn+1 = 2
n
∑

k=p

M t
kΣ
−1
k ∆Mk+1 and Wn+1 =

n
∑

k=p

∆M t
k+1Σ

−1
k ∆Mk+1.

The asymptotic behavior of the left-hand side of (8.1) is as follows.

Lemma 8.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

Vn+1+An

n
= (p+ 1)σ2 a.s. (8.2)

Proof: The proof is given in Appendix B. It relies on the Riccation equation associated to (Sn) and
the strong law of large numbers for (Wn). �

Since (Vn) and (An) are two sequences of positive real numbers, we infer from Lemma 8.1 that
Vn+1 = O (n) a.s. which ends the proof of (5.2). �

Proof of result (5.5) of Theorem 5.2: It clearly follows from (4.1) that

Vn = (bθn− θ)tΣn−1(bθn− θ).

Consequently, the asymptotic behavior of bθn − θ is clearly related to the one of Vn. More precisely,
we can deduce from convergence (5.1) that

lim
n→∞

λmin(Σn)
|Tn|

= λmin(Λ)> 0 a.s.
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since L as well as Λ = I2 ⊗ L are definite positive matrices. Here λmin(Λ) stands for the smallest
eigenvalue of the matrix Λ. Therefore, as

‖bθn− θ‖2 ≤
Vn

λmin(Σn−1)
,

we use (5.2) to conclude that

‖bθn− θ‖2 = O
�

n

|Tn−1|

�

= O
�

log |Tn−1|
|Tn−1|

�

a.s.

which completes the proof of (5.5). �

We now turn to the proof of the quadratic strong law. To this end, we need a sharper estimate of the
asymptotic behavior of (Vn).

Lemma 8.2. Assume that (εn) satisfies (H.1) to (H.3). Then, we have for all δ > 1/2,

‖ Mn ‖2= o(|Tn−1|nδ) a.s. (8.3)

Proof: The proof is given in Appendix C. �

A direct application of Lemma 8.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, Lemma 8.1
immediately leads to the following result.

Corollary 8.3. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

An

n
= (p+ 1)σ2 a.s. (8.4)

Proof of result (5.3) of Theorem 5.1: First of all,An may be rewritten as

An =
n
∑

k=p

M t
k(Σ

−1
k−1−Σ

−1
k )Mk =

n
∑

k=p

M t
kΣ
−1/2
k−1 ∆kΣ

−1/2
k−1 Mk

where ∆n = I2(p+1)−Σ
1/2
n−1Σ

−1
n Σ

1/2
n−1. In addition, via Proposition 5.1

lim
n→∞

Σn

|Tn|
= Λ a.s. (8.5)

which implies that

lim
n→∞

∆n =
1

2
I2(p+1) a.s. (8.6)

Furthermore, it follows from Corollary 8.3 that An = O (n) a.s. Hence, we deduce from (8.5) and
(8.6) that

An

n
=







1

2n

n
∑

k=p

M t
kΣ
−1
k−1Mk






+ o(1) a.s. (8.7)
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and convergence (5.3) directly follows from Corollary 8.3. �

We are now in position to prove the QSL.

Proof of result (5.6) of Theorem 5.2: The QSL is a direct consequence of (5.3) together with the
fact that bθn− θ = Σ−1

n−1Mn. Indeed, we have

1

n

n
∑

k=p

M t
kΣ
−1
k−1Mk =

1

n

n
∑

k=p

(bθk − θ)tΣk−1(bθk − θ)

=
1

n

n
∑

k=p

|Tk−1|(bθk − θ)t
Σk−1

|Tk−1|
(bθk − θ)

=
1

n

n
∑

k=p

|Tk−1|(bθk − θ)tΛ(bθk − θ) + o(1) a.s.

which completes the proof of Theorem 5.2. �

9 Proof of Theorem 5.3

The almost sure convergence of bσ2
n and bρn is strongly related to that of bVn− Vn.

Proof of result (5.7) of Theorem 5.3: We need to prove that

lim
n→∞

1

n

∑

k∈Tn−1,p−1

‖bVk − Vk‖2 = 2(p+ 1)σ2 a.s. (9.1)

Once again, we are searching for a link between the sum of ‖bVn − Vn‖ and the processes (An) and
(Vn) whose convergence properties were previously investigated. For all n≥ p, we have

∑

k∈Gn

‖bVk − Vk‖2 =
∑

k∈Gn

(bε2k − ε2k)
2+ (bε2k+1− ε2k+1)

2,

= (bθn− θ)tΨnΨ
t
n(bθn− θ),

= M t
nΣ
−1
n−1ΨnΨ

t
nΣ
−1
n−1Mn,

= M t
nΣ
−1/2
n−1 ∆nΣ

−1/2
n−1 Mn,

where

∆n = Σ
−1/2
n−1 ΨnΨ

t
nΣ
−1/2
n−1 = Σ

−1/2
n−1 (Σn−Σn−1)Σ

−1/2
n−1 .

Now, we can deduce from convergence (8.5) that

lim
n→∞

∆n = I2(p+1) a.s.
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which implies that
∑

k∈Gn

‖bVk − Vk‖2 = M t
nΣ
−1
n−1Mn

�

1+ o(1)
�

a.s.

Therefore, we can conclude via convergence (5.3) that

lim
n→∞

1

n

∑

k∈Tn−1,p−1

‖bVk − Vk‖2 = lim
n→∞

1

n

n
∑

k=p

M t
kΣ
−1
k−1Mk = 2(p+ 1)σ2 a.s.

Proof of result (5.8) of Theorem 5.3: First of all,

bσ2
n−σ

2
n =

1

2|Tn−1|

∑

k∈Tn−1,p−1

�

‖bVk‖2−‖Vk‖2
�

,

=
1

2|Tn−1|

∑

k∈Tn−1,p−1

�

‖bVk − Vk‖2+ 2(bVk − Vk)
t Vk
�

.

Set

Pn =
∑

k∈Tn−1,p−1

(bVk − Vk)
t Vk =

n
∑

k=p

∑

i∈Gk−1

(bVi − Vi)
t Vi .

We clearly have
∆Pn+1 = Pn+1− Pn =

∑

k∈Gn

(bVk − Vk)
t Vk.

One can observe that for all k ∈ Gn, bVk − Vk = (I2 ⊗ Yk)t(θ − bθn) which implies that bVk − Vk is
Fn-measurable. Consequently, (Pn) is a real martingale transform. Hence, we can deduce from the
strong law of large numbers for martingale transforms given in Theorem 1.3.24 of [4] together with
(9.1) that

Pn = o







∑

k∈Tn−1,p−1

||bVk − Vk)||2






= o(n) a.s.

It ensures once again via convergence (9.1) that

lim
n→∞

|Tn|
n
(bσ2

n−σ
2
n) = lim

n→∞

1

n

∑

k∈Tn−1,p−1

‖bVk − Vk‖2 = 2(p+ 1)σ2 a.s.

We now turn to the study of the covariance estimator bρn. We have

bρn−ρn =
1

|Tn−1|

∑

k∈Tn−1,p−1

(bε2kbε2k+1− ε2kε2k+1),

=
1

|Tn−1|

∑

k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) +
1

|Tn−1|
Qn,

where
Qn =

∑

k∈Tn−1,p−1

(bε2k − ε2k)ε2k+1+ (bε2k+1− ε2k+1)ε2k =
∑

k∈Tn−1,p−1

(bVk − Vk)
tJ2Vk
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with

J2 =

�

0 1
1 0

�

.

Moreover, one can observe that J2ΓJ2 = Γ. Hence, as before, (Qn) is a real martingale transform
satisfying

Qn = o







∑

k∈Tn−1,p−1

||bVk − Vk)||2






= o(n) a.s.

We will see in Appendix D that

lim
n→∞

1

n

∑

k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) = (p+ 1)ρ a.s. (9.2)

Finally, we find from (9.2) that

lim
n→∞

|Tn|
n
(bρn−ρn) = 2(p+ 1)ρ a.s.

which completes the proof of Theorem 5.3. �

10 Proof of Theorem 5.4

In order to prove the CLT for the BAR(p) estimators, we will use the central limit theorem for
martingale difference sequences given in Propositions 7.8 and 7.9 of Hamilton [8].

Proposition 10.1. Assume that (Wn) is a vector martingale difference sequence satisfying

(a) For all n≥1, E[WnW t
n ]=Ωn where Ωn is a positive definite matrix and

lim
n→∞

1

n

n
∑

k=1

Ωk = Ω

where Ω is also a positive definite matrix.

(b) For all n ≥ 1 and for all i, j, k, l, E[WinWjnWknWln] < ∞ where Win is the ith element of the
vector Wn.

(c)
1

n

n
∑

k=1

WkW t
k
P−→ Ω.

Then, we have the central limit theorem

1
p

n

n
∑

k=1

Wk
L−→N (0,Ω).
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We wish to point out that for BAR(p) processes, it seems impossible to make use of the standard CLT
for martingales. This is due to the fact that Lindeberg’s condition is not satisfied in our framework.
Moreover, as the size of (ξn) doubles at each generation, it is also impossible to check condition (c).
To overcome this problem, we simply change the filtration. Instead of using the generation-wise
filtration, we will use the sister pair-wise one. Let

Gn = σ{X1, (X2k, X2k+1), 1≤ k ≤ n}

be the σ-algebra generated by all pairs of individuals up to the offspring of individual n. Hence
(ε2n,ε2n+1) is Gn-measurable. Note that Gn is also the σ-algebra generated by, on the one hand, all
the past generations up to that of individual n, i.e. the rnth generation, and, on the other hand, all
pairs of the (rn+ 1)th generation with ancestors less than or equal to n. In short,

Gn = σ
�

Frn
∪ {(X2k, X2k+1), k ∈Grn

, k ≤ n}
�

.

Therefore, (H.2) implies that the processes (ε2n,Xnε2n,ε2n+1,Xnε2n+1)t , (ε2
2n + ε

2
2n+1 − 2σ2) and

(ε2nε2n+1−ρ) are Gn-martingales.

Proof of result (5.4) of Theorem 5.1: First, recall that Yn = (1,Xn)t . We apply Propositions 10.1
to the Gn-martingale difference sequence (Dn) given by

Dn = vec(YnV t
n ) =











ε2n
Xnε2n
ε2n+1
Xnε2n+1











.

We clearly have

DnDt
n =

�

ε2
2n ε2nε2n+1
ε2n+1ε2n ε2

2n+1

�

⊗ YnY t
n .

Hence, it follows from (H.1) and (H.2) that

E[DnDt
n] = Γ⊗E[YnY t

n ].

Moreover, we can show by a slight change in the proof of Lemmas 7.1 and 7.2 that

lim
n→∞

1

|Tn|

∑

k∈Tn−1,p−1

E[DkDt
k] = Γ⊗ lim

n→∞

1

|Tn|
E[Sn] = Γ⊗ L,

which is positive definite, so that condition (a) holds. Condition (b) also clearly holds under (H.3).
We now turn to condition (c). We have

∑

k∈Tn−1,p−1

DkDt
k = Γ⊗ Sn+ Rn

where

Rn =
∑

k∈Tn−1,p−1

�

ε2
2k −σ

2 ε2kε2k+1−ρ
ε2k+1ε2k −ρ ε2

2k+1−σ
2

�

⊗ YkY t
k .
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Under (H.1) to (H.5), we can show that (Rn) is a martingale transform. Moreover, we can prove that
Rn = o(n) a.s. using Lemma A.6 and similar calculations as in Appendix B where a more complicated
martingale transform (Kn) is studied. Consequently, condition (c) also holds and we can conclude
that

1
p

|Tn−1|

∑

k∈Tn−1,p−1

Dk =
1

p

|Tn−1|
Mn

L−→N (0,Γ⊗ L). (10.1)

Proof of result (5.11) of Theorem 5.4: We deduce from (4.1) that

p

|Tn−1|(bθn− θ) = |Tn−1|Σ−1
n−1

Mn
p

|Tn−1|
.

Hence, (5.11) directly follows from (5.4) and convergence (8.5) together with Slutsky’s Lemma. �

Proof of results (5.12) and (5.13) of Theorem 5.4: On the one hand, we apply Propositions 10.1
to the Gn-martingale difference sequence (vn) defined by

vn = ε
2
2n+ ε

2
2n+1− 2σ2.

Under (H.4), one has E[v2
n] = 2τ4− 4σ4+ 2ν2 which ensures that

lim
n→∞

1

|Tn|

∑

k∈Tn,p−1

E[v2
k ] = 2τ4− 4σ4+ 2ν2 > 0.

Hence, condition (a) holds. Once again, condition (b) clearly holds under (H.5), and Lemma 6.3
together with Remark 6.4 imply condition (c),

lim
n→∞

1

|Tn|

∑

k∈Tn,p−1

v2
k = 2τ4− 4σ4+ 2ν2 a.s.

Therefore, we obtain that

1
p

|Tn−1|

∑

k∈Tn−1,p−1

vk = 2
p

|Tn−1|(σ2
n−σ

2)
L−→N (0, 2τ4− 4σ4+ 2ν2). (10.2)

Furthermore, we infer from (5.8) that

lim
n→∞

p

|Tn−1|(bσ2
n−σ

2
n) = 0 a.s. (10.3)

Finally, (10.2) and (10.3) imply (5.12). On the other hand, we apply again Proposition 10.1 to the
Gn-martingale difference sequence (wn) given by

wn = ε2nε2n+1−ρ.

Under (H.4), one has E[w2
n] = ν

2−ρ2 which implies that condition (a) holds since

lim
n→∞

1

|Tn|

∑

k∈Tn,p−1

E[w2
k] = ν

2−ρ2 > 0.
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Once again, condition (b) clearly holds under (H.5), and Lemmas 6.1 and 6.3 yield condition (c),

lim
n→∞

1

|Tn|

∑

k∈Tn,p−1

w2
k = ν

2−ρ2 a.s.

Consequently, we obtain that

1
p

|Tn−1|

∑

k∈Tn−1,p−1

wk =
p

|Tn−1|(ρn−ρ)
L−→N (0,ν2−ρ2). (10.4)

Furthermore, we infer from (5.10) that

lim
n→∞

p

|Tn−1|(bρn−ρn) = 0 a.s. (10.5)

Finally, (5.13) follows from (10.4) and (10.5) which completes the proof of Theorem 5.4. �

Appendices

A Laws of large numbers for the BAR process

We start with some technical Lemmas we make repeatedly use of, the well-known Kronecker’s
Lemma given in Lemma 1.3.14 of [4] together with some related results.

Lemma A.1. Let (αn) be a sequence of positive real numbers increasing to infinity. In addition, let (xn)
be a sequence of real numbers such that

∞
∑

n=0

|xn|
αn

<+∞.

Then, one has

lim
n→∞

1

αn

n
∑

k=0

xk = 0.

Lemma A.2. Let (xn) be a sequence of real numbers. Then,

lim
n→∞

1

|Tn|

∑

k∈Tn

xk = x ⇐⇒ lim
n→∞

1

|Gn|

∑

k∈Gn

xk = x . (A.1)

Proof: First of all, recall that |Tn|= 2n+1− 1 and |Gn|= 2n. Assume that

lim
n→∞

1

|Tn|

∑

k∈Tn

xk = x .

We have the decomposition,
∑

k∈Tn

xk =
∑

k∈Tn−1

xk +
∑

k∈Gn

xk.
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Consequently,

lim
n→∞

1

|Gn|

∑

k∈Gn

xk = lim
n→∞

2

|Tn|+ 1

∑

k∈Tn

xk − lim
n→∞

1

|Tn−1|+ 1

∑

k∈Tn−1

xk,

= 2x − x = x .

Conversely, suppose that

lim
n→∞

1

|Gn|

∑

k∈Gn

xk = x .

A direct application of Toeplitz Lemma given in Lemma 2.2.13 of [4]) yields

lim
n→∞

1

|Tn|

∑

k∈Tn

xk = lim
n→∞

1

|Tn|

n
∑

k=0

∑

i∈Gk

x i ,

= lim
n→∞

1

|Tn|

n
∑

k=0

2k 1

|Gk|

∑

i∈Gk

x i = x .

Lemma A.3. Let (An) be a sequence of real-valued matrices such that
∑∞

n=0 ‖An‖<∞ and

lim
n→∞

n
∑

k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a limiting value X . Then,

lim
n→∞

n
∑

k=0

An−kXk = AX . (A.2)

Proof: For all n≥ 0, let

Un =
n
∑

k=0

An−kXk.

We clearly have for all integer n0 with 1≤ n0 < n,

‖Un− AX‖ =









n
∑

k=0

An−kXk −
n
∑

k=0

AkX −
∞
∑

k=n+1

AkX







,

≤
n
∑

k=0

‖An−k‖‖Xk − X‖+
∞
∑

k=n+1

‖Ak‖‖X‖,

≤
n0
∑

k=0

‖An−k‖‖Xk − X‖+
n
∑

k=n0+1

‖An−k‖‖Xk − X‖+
∞
∑

k=n+1

‖Ak‖‖X‖.

We assume that (Xn) converges to a limiting value X . Consequently, we can choose n0 such that for
all k > n0, ‖Xk − X‖ < ε. Moreover, one can find M > 0 such that for all k ≥ 0, ‖Xk − X‖ ≤ M and
‖X‖ ≤ M . Therefore, we obtain that

‖Un− AX‖ ≤ (n0+ 1)M sup
k≥n−n0

‖Ak‖+ ε
n
∑

k=n0+1

‖An−k‖+M
∞
∑

k=n+1

‖Ak‖.
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On the one hand

sup
k≥n−n0

‖Ak‖ and
∞
∑

k=n+1

‖Ak‖

both converge to 0 as n tends to infinity. On the other hand,

n
∑

k=n0+1

‖An−k‖ ≤
∞
∑

n=0

‖An‖<∞.

Consequently, ‖Un− AX‖ goes to 0 as n goes to infinity, as expected. �

Lemma A.4. Let (Tn) be a convergent sequence of real-valued matrices with limiting value T . Then,

lim
n→∞

n
∑

k=0

1

2k

∑

C∈{A;B}k
C Tn−kC t = `

where the matrix

`=
∞
∑

k=0

1

2k

∑

C∈{A;B}k
C T C t

is the unique solution of the equation

`= T +
1

2
(A`At + B`B t). (A.3)

Proof: First of all, recall that β = max{‖A‖,‖B‖} < 1. The cardinality of {A; B}k is obviously 2k.
Consequently, if

Un =
n
∑

k=0

1

2k

∑

C∈{A;B}k
C(Tn−k − T )C t ,

it is not hard to see that

‖Un‖ ≤
n
∑

k=0

1

2k
× 2kβ2k








Tn−k − T







=
n
∑

k=0

β2(n−k)







Tk − T







.

Hence, (Un) converges to zero which completes the proof of Lemma A.4. �

We now return to the BAR process. We first need an estimate of the sum of the ‖Xn‖2 before being
able to investigate the limits.

Lemma A.5. Assume that (εn) satisfies (H.1) to (H.3). Then, we have
∑

k∈Tn,p

‖Xk‖2 = O (|Tn|) a.s. (A.4)
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Proof: In all the sequel, for all n ≥ 2p−1, denote A2n = A and A2n+1 = B. It follows from a recursive
application of relation (2.2) that for all n≥ 2p−1

Xn =
�

rn−p
∏

k=0

A[ n
2k ]

�

X[ n
2rn−p+1 ]+

rn−p
∑

k=0

�
k−1
∏

i=0

A[ n
2i ]

�

η[ n
2k ]

(A.5)

with the convention that an empty product equals 1. Then, we can deduce from Cauchy-Schwarz
inequality that for all n≥ 2p−1








Xn−
�

rn−p
∏

k=0

A[ n
2k ]
�

X[ n
2rn−p+1 ]










2
=
















rn−p
∑

k=0

�
k−1
∏

i=0

A[ n
2i ]

�

η[ n
2k ]
















2

≤

 

rn−p
∑

k=0

�
k−1
∏

i=0

‖A[ n
2i ]
‖
�

‖η[ n
2k ]
‖

!2

≤

 

rn−p
∑

k=0

β k




η[ n
2k ]







!2

≤

 

rn−p
∑

k=0

β k

! 

rn−p
∑

k=0

β k‖η[ n
2k ]
‖2
!

≤
1

1− β

 

rn−p
∑

k=0

β k‖η[ n
2k ]
‖2
!

.

Hence, we obtain that for all n≥ 2p,

‖Xn‖2 =
















Xn−
�

rn−p
∏

k=0

A[ n
2k ]

�

X[ n
2rn−p+1 ]+

�

rn−p
∏

k=0

A[ n
2k ]

�

X[ n
2rn−p+1 ]
















2

≤
2

1− β

 

rn−p
∑

k=0

β k‖η[ n
2k ]
‖2
!

+ 2β2(rn−p+1)‖X[ n
2rn−p+1 ]‖

2.

Denote α =max{|a0|, |b0|} and X 1 =max{‖Xk‖, k ≤ 2p−1}. Summing up over the sub-tree Tn,p, we
find that

∑

k∈Tn,p

‖Xk‖2 ≤
∑

k∈Tn,p

2

1− β

 

rk−p
∑

i=0

β i‖η[ k
2i ]
‖2
!

+
∑

k∈Tn,p

2β2(rk−p+1)‖X[ k
2rk−p+1 ]

‖2

≤
4

1− β

∑

k∈Tn,p

rk−p
∑

i=0

β i(α2+ ε2
[ k

2i ]
) +
∑

k∈Tn,p

2β2(rk−p+1)‖X[ k
2rk−p+1 ]

‖2

≤
4

1− β

∑

k∈Tn,p

rk−p
∑

i=0

β iε2
[ k

2i ]
+

4α2

1− β

∑

k∈Tn,p

rk−p
∑

i=0

β i

+2X1
2 ∑

k∈Tn,p

β2(rk−p+1),

≤
4Pn

1− β
+

4α2Qn

1− β
+ 2X

2
1Rn, (A.6)
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where

Pn =
∑

k∈Tn,p

rk−p
∑

i=0

β iε2
[ k

2i ]
, Qn =

∑

k∈Tn,p

rk−p
∑

i=0

β i , Rn =
∑

k∈Tn,p

β2(rk−p+1).

The last two terms of (A.6) are readily evaluated by splitting the sums generation-wise. As a matter
of fact,

Qn =
n
∑

k=p

∑

i∈Gk

1− β k

1− β
≤

1

(1− β)

n
∑

k=p

2k = O (|Tn|), (A.7)

and

Rn =
n
∑

k=p

∑

i∈Gk

β k−p+1 ≤
n
∑

k=p

(2β)k = O (|Tn|). (A.8)

It remains to control the first term Pn. One can observe that εk appears in Pn as many times as it has
descendants up to the nth generation, and its multiplicative factor for its ith generation descendant
is (2β)i . Hence, one has

Pn =
∑

k∈Tn,p

n−rk
∑

i=0

(2β)iε2
k .

The evaluation of Pn depends on the value of 0< β < 1. On the one hand, if β = 1/2, Pn reduces to

Pn =
∑

k∈Tn,p

(n+ 1− rk)ε
2
k =

n
∑

k=p

(n+ 1− k)
∑

i∈Gk

ε2
i .

Hence,

Pn

|Tn|+ 1
=

n
∑

k=p

�

(n+ 1− k)

2n+1−k

�







1

|Gk|

∑

i∈Gk

ε2
i






.

However, it follows from Remark 6.2 that

lim
n→+∞

1

|Gn|

∑

k∈Gn

ε2
k = σ

2 a.s.

In addition, we also have

lim
n→∞

n
∑

k=1

k

2k
= 2.

Consequently, we infer from Lemma A.3 that

lim
n→+∞

Pn

|Tn|
= 2σ2 a.s. (A.9)

On the other hand, if β 6= 1/2, we have

Pn =
∑

k∈Tn,p

1− (2β)n−rk+1

1− 2β
ε2

k =
1

1− 2β

n
∑

k=p

(1− (2β)n−k+1)
∑

i∈Gk

ε2
i .
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Thus,

Pn

|Tn|+ 1
=

1

1− 2β

n
∑

k=p

�

�1

2

�n−k+1
− βn−k+1

�







1

|Gk|

∑

i∈Gk

ε2
i






.

Furthermore,

lim
n→∞

1

1− 2β

n
∑

k=1

�

�1

2

�k
− β k

�

=
1

1− β
.

As before, we deduce from Lemma A.3 that

lim
n→+∞

Pn

|Tn|
=

σ2

1− β
. a.s. (A.10)

Finally, Lemma A.5 follows from the conjunction of (A.6), (A.7), (A.8) together with (A.9) and
(A.10). �

Proof of Lemma 7.1 : First of all, denote

Hn =
∑

k∈Tn,p−1

Xk and Pn =
∑

k∈Tn,p

εk,

As |Tn|= 2n+1− 1, we obtain from Equation (2.2) the recursive relation

Hn = Hp−1+
∑

k∈Tn,p

�

AkX[ k
2
]+ηk

�

,

= Hp−1+ 2AHn−1+ 2a(2n− 2p−1)e1+ Pne1 (A.11)

where e1 = (1, 0, . . . , 0)t ∈ Rp, a = (a0+ b0)/2 and the matrix

A=
A+ B

2
.

By induction, we deduce from (A.11) that

Hn

2n+1 =
Hp−1

2n+1 + A
Hn−1

2n + a
�2n− 2p−1

2n

�

e1+
Pn

2n+1 e1,

= (A)n−p+1
Hp−1

2p +
n
∑

k=p

(A)n−k

�

Hp−1

2k+1
+ a
�2k − 2p−1

2k

�

e1+
Pk

2k+1
e1

�

.

We have already seen via convergence (6.1) of Lemma 6.1 that

lim
n→+∞

Pn

2n+1 = 0 a.s.

Finally, as ‖A‖< 1,
∞
∑

n=0

‖(A)n‖<∞ and (Ip − A)−1 =
∞
∑

n=0

(A)n,
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it follows from Lemma A.3 that

lim
n→∞

Hn

2n+1 = a(Ip − A)−1e1 a.s.

which ends the proof of Lemma 7.1. �

Proof of Lemma 7.2 : We shall proceed as in the proof of Lemma 7.1 and use the same notation.
Let

Kn =
∑

k∈Tn,p−1

XkXt
k and Ln =

∑

k∈Tn,p

ε2
k .

We infer again from (2.2) that

Kn = Kp−1+
∑

k∈Tn,p

�

AkX[ k
2
]+ηk

��

AkX[ k
2
]+ηk

�t

= Kp−1+
∑

k∈Tn,p

ε2
k e1et

1+
∑

k∈Tn−1,p−1

�

AXkXt
kAt + BXkXt

kB t
�

+
∑

k∈Tn−1,p−1

�

(a0+ ε2k)Uk(A) + (b0+ ε2k+1)Uk(B) + 2(a2+ ζ2k)e1et
1

�

where Uk(A) = AXket
1 + e1Xt

kAt and Uk(B) = BXket
1 + e1Xt

kB t . In addition, a2 = (a2
0 + b2

0)/2 and
ζ2k = (a0ε2k + b0ε2k+1). Therefore, we obtain that

Kn

2n+1 =
1

2

�

A
Kn−1

2n At + B
Kn−1

2n B t
�

+ Tn (A.12)

where

Tn =







Ln

2n+1 + a2
�2n− 2p−1

2n

�

+
1

2n

∑

k∈Tn−1,p−1

ζ2k






e1et

1

+
1

2

�

a0

�

A
Hn−1

2n et
1+ e1

H t
n−1

2n At
�

+ b0

�

B
Hn−1

2n et
1+ e1

H t
n−1

2n B t
�

�

+
1

2n+1

∑

k∈Tn−1,p−1

�

ε2kUk(A) + ε2k+1Uk(B)
�

.

The two first results (6.1) and (6.2) of Lemma 6.1 together with Remark 6.2 and Lemma A.2 readily
imply that

lim
n→+∞

Ln

2n+1 = σ
2 a.s.

and

lim
n→+∞

1

2n

∑

k∈Tn−1,p−1

ζ2k = 0 a.s.

In addition, Lemma 7.1 gives

lim
n→+∞

Hn−1

2n = λ a.s.
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Furthermore, denote
Un =

∑

k∈Tn−1,p−1

�

ε2kUk(A) + ε2k+1Uk(B)
�

.

For all u ∈ Rp, let Un(u) = ut Unu. The sequence
�

Un(u)
�

is a real martingale transform. Moreover,
it follows from Lemma A.5 that

∑

k∈Tn−1,p−1

�

�

�utUk(A)u
�

�

�

2
+
�

�

�utUk(B)u
�

�

�

2
= O (|Tn|) a.s.

Consequently, we deduce from the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [4] that Un(u) = o(|Tn|) a.s. for all u ∈ Rp which leads to Un = o(|Tn|) a.s.
Therefore, we obtain that (Tn) converges a.s. to T given by

T = (σ2+ a2)e1et
1+

1

2

�

Aλa0et
1+ a0e1λ

tAt + Bλb0et
1+ b0e1λ

t B t
�

.

Finally, iteration of the recursive relation (A.12) yields

Kn

2n+1 =
1

2n−p+1

∑

C∈{A;B}n−p+1

C
Kp−1

2p C t +
n−p
∑

k=0

1

2k

∑

C∈{A;B}k
C Tn−kC t .

On the one hand, the first term on the right-hand side converges a.s. to zero as its norm is bounded
β2(n−p+1)‖Kp−1‖/2p. On the other hand, thanks to Lemma A.4, the second term on the right-hand
side converges to ` given by (A.3), which completes the proof of Lemma 7.2. . �

We now state a convergence result for the sum of ‖Xn‖4 which will be useful for the CLT.

Lemma A.6. Assume that (εn) satisfies (H.1) to (H.5). Then, we have
∑

k∈Tn,p

‖Xk‖4 = O (|Tn|) a.s. (A.13)

Proof : The proof is almost exactly the same as that of Lemma A.5. Instead of Equation (A.6), we
have

∑

k∈Tn,p

‖Xk‖4 ≤
64Pn

(1− β)3
+

64α4Qn

(1− β)3
+ 8X

4
1Rn

where

Pn =
∑

k∈Tn,p

rk−p
∑

i=0

β iε4
[ k

2i ]
, Qn =

∑

k∈Tn,p

rk−p
∑

i=0

β i , Rn =
∑

k∈Tn,p

β4(rk−p+1) .

We already saw that Qn = O (|Tn|). In addition, it is not hard to see that Rn = O (|Tn|). Therefore,
we only need a sharper estimate for un. Via the same lines as in the proof of Lemma A.5 together
with the sharper results of Lemma 6.3, we can show that Pn = O (|Tn|) a.s. which leads to (A.13). �
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B On the quadratic strong law

We start with an auxiliary lemma closely related to the Riccation Equation for the inverse of the
matrix Sn.

Lemma B.1. Let hn and ln be the two following symmetric square matrices of order δn

hn = Φ
t
nS−1

n Φn and ln = Φ
t
nS−1

n−1Φn.

Then, the inverse of Sn may be recursively calculated as

S−1
n = S−1

n−1− S−1
n−1Φn(Iδn

+ ln)
−1Φt

nS−1
n−1. (B.1)

In addition, we also have (Iδn
− hn)(Iδn

+ ln) = Iδn
.

Remark B.2. If fn =Ψt
nΣ
−1
n Ψn, it follows from Lemma B.1 that

Σ−1
n = Σ

−1
n−1−Σ

−1
n−1Ψn(I2δn

− fn)Ψ
t
nΣ
−1
n−1. (B.2)

Proof : As Sn = Sn−1+ΦnΦt
n, relation (B.1) immediately follows from Riccati Equation given e.g. in

[4] page 96. By multiplying both side of (B.1) by Φn, we obtain

S−1
n Φn = S−1

n−1Φn− S−1
n−1Φn(Iδn

+ ln)
−1ln,

= S−1
n−1Φn− S−1

n−1Φn(Iδn
+ ln)

−1(Iδn
+ ln− Iδn

),

= S−1
n−1Φn(Iδn

+ ln)
−1.

Consequently, multiplying this time on the left by Φt
n, we obtain that

hn = ln(Iδn
+ ln)

−1 = (ln+ Iδn
− Iδn

)(Iδn
+ ln)

−1,

= Iδn
− (Iδn

+ ln)
−1

leading to (Iδn
− hn)(Iδn

+ ln) = Iδn
. �

In order to establish the quadratic strong law for (Mn), we are going to study separately the asymp-
totic behaviour of (Wn) and (Bn) which appear in the main decomposition (8.1).

Lemma B.3. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

1

n
Wn = 2σ2 a.s. (B.3)

Proof : First of all, we have the decomposition Wn+1 = Tn+1+Rn+1 where

Tn+1 =
n
∑

k=p

∆M t
k+1Λ

−1∆Mk+1

|Tk|
,

Rn+1 =
n
∑

k=p

∆M t
k+1(|Tk|Σ−1

k −Λ
−1)∆Mk+1

|Tk|
.
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We claim that

lim
n→+∞

1

n
Tn = (p+ 1)σ2 a.s.

It will ensure via (8.5) that Rn = o(n) a.s. leading to (B.3). One can observe that Tn+1 =
t r(Λ−1/2Hn+1Λ−1/2) where

Hn+1 =
n
∑

k=p

∆Mk+1∆M t
k+1

|Tk|
.

Our goal is to make use of the strong law of large numbers for martingale transforms, so we start by
adding and subtracting a term involving the conditional expectation of ∆Hn+1 given Fn. We have
already seen in Section 4 that for all n ≥ p − 1, E[∆Mn+1∆M t

n+1|Fn] = Γ⊗ ΦnΦt
n. Consequently,

we can split Hn+1 into two terms

Hn+1 =
n
∑

k=p

Γ⊗ΦkΦt
k

|Tk|
+ Kn+1

where

Kn+1 =
n
∑

k=p

∆Mk+1∆M t
k+1−Γ⊗ΦkΦt

k

|Tk|
.

On the one hand, it follows from convergence (5.1) and Lemma A.2 that

lim
n→+∞

ΦnΦt
n

|Tn|
=

1

2
L a.s.

Thus, Cesaro convergence yields

lim
n→+∞

1

n

n
∑

k=p

Γ⊗ΦkΦt
k

|Tk|
=

1

2
(Γ⊗ L) a.s. (B.4)

On the other hand, the sequence (Kn) is obviously a matrix martingale transform satisfying

∆Kn+1 = Kn+1− Kn =
1

|Tn+1|

∑

i, j∈Gn

Γi j ⊗
�

1 Xt
j

Xi XiXt
j

�

where

Γi j =

�

ε2iε2 j − 1Ii= jσ
2 ε2iε2 j+1− 1Ii= jρ

ε2i+1ε2 j − 1Ii= jρ ε2i+1ε2 j+1− 1Ii= jσ
2

�

.

For all u ∈ R2(p+1), let Kn(u) = ut Knu. It follows from tedious but straightforward calculations,
together with (A.4), (A.13) and the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [4] that Kn(u) = o(n) a.s. for all u ∈ R2(p+1) leading to Kn = o(n) a.s. Hence, we
infer from (B.4) that

lim
n→+∞

1

n
Hn =

1

2
(Γ⊗ L) a.s. (B.5)
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Finally, we find from (B.5) that

lim
n→+∞

1

n
Tn =

1

2
t r(Λ−1/2(Γ⊗ L)Λ−1/2) a.s.

=
1

2
t r((Γ⊗ L)Λ−1) a.s.

=
1

2
t r(Γ⊗ Ip+1) = (p+ 1)σ2 a.s.

which completes the proof of Lemma B.3 �

Lemma B.4. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

Bn+1 = o(n) a.s.

Proof : Recall that

Bn+1 = 2
n
∑

k=p

M t
kΣ
−1
k ∆Mk+1 = 2

n
∑

k=p

M t
kΣ
−1
k Ψkξk+1.

The sequence (Bn) is a real martingale transform satisfying

∆Bn+1 =Bn+1−Bn = 2M t
nΣ
−1
n Ψnξn+1.

Consequently, via the strong law of large numbers for martingale transforms [4], we find that either
(Bn) converges a.s. orBn+1 = o(νn) a.s. where

νn =
n
∑

k=p

M t
kΣ
−1
k ΨkΨ

t
kΣ
−1
k Mk.

However, for all n≥ 2p−1, ΨnΨt
n = I2⊗ΦnΦt

n which implies that

νn =
n
∑

k=p

M t
kΣ
−1
k (I2⊗ΦkΦ

t
k)Σ

−1
k Mk =

n
∑

k=p

M t
k(I2⊗ S−1

k ΦkΦ
t
kS−1

k )Mk.

Furthermore, it follows from Lemma B.1 that

S−1
n−1− S−1

n = S−1
n Φn(Iδn

+ ln)Φ
t
nS−1

n ≥ S−1
n ΦnΦ

t
nS−1

n

as the matrix ln is definite positive. Therefore, we obtain that

νn ≤
n
∑

k=p

M t
k(Σ

−1
k−1−Σ

−1
k )Mk =An.

Finally, we deduce from the main decomposition (8.1) that

Vn+1+An = o(An) +O (n) a.s.

leading to Vn+1 = O (n) and An = O (n) a.s. as Vn+1 and An are non-negative, which implies in
turn thatBn = o(n) a.s. completing the proof of Lemma B.4. �

Proof of Lemma 8.1 : Convergence (8.2) immediately follows from (8.1) together with Lemmas B.3
and B.4. �
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C On Wei’s Lemma

In order to prove (8.3), we shall apply Wei’s Lemma given in [13] page 1672, to each entry of the
vector-valued martingale

Mn =
n
∑

k=p

∑

i∈Gk−1











ε2i
Xiε2i
ε2i+1
Xiε2i+1











.

We shall only carry out the proof for the first (p+1) of Mn inasmuch as the proof for the (p+1) last
components follows exactly the same lines. Denote

Pn =
n
∑

k=p

∑

i∈Gk−1

ε2i and Qn =
n
∑

k=p

∑

i∈Gk−1

Xiε2i .

On the one hand, Pn can be rewritten as Pn =
n
∑

k=p

p

|Gk−1|vk where

vn =
1

p

|Gn−1|

∑

i∈Gn−1

ε2i .

We clearly have E[vn+1|Fn] = 0, E[v2
n+1|Fn] = σ2 a.s. Moreover, it follows from (H.1) to (H.3)

together with Cauchy-Schwarz inequality that

E[v4
n+1|Fn] =

1

|Gn|2
∑

i∈Gn

E[ε4
2i|Fn] +

3

|Gn|2
∑

i∈Gn

∑

j 6=i

E[ε2
2i|Fn]E[ε2

2 j|Fn]

≤ 3 sup
i∈Gn

E[ε4
2i|Fn] a.s.

which implies that supE[v4
n+1|Fn] < +∞ a.s. Consequently, we deduce from Wei’s Lemma that for

all δ > 1/2,
P2

n = o(|Tn−1|nδ) a.s.

On the other hand, we also have Qn =
n
∑

k=p

p

|Gk−1|wk where

wn =
1

p

|Gn−1|

∑

i∈Gn−1

Xiε2i .

It is not hard to see that E[wn+1|Fn] = 0 a.s. Moreover, for all 1 ≤ k ≤ p, let wn(k) be the kth
coordinate of the vector wn. It follows from (H.1) to (H.3) and Cauchy-Schwarz inequality that for
all 1≤ k ≤ p,

E[wn+1(k)
4|Fn] ≤

1

|Gn|2
∑

i∈Gn

X 4
[ i

2k−1 ]
E[ε4

2i|Fn]+
3σ4

|Gn|2
∑

i∈Gn

∑

j 6=i

X 2
[ i

2k−1 ]
X 2
[ j

2k−1 ]

≤ 3 sup
i∈Gn

E[ε4
2i|Fn]







1

|Gn|

∑

i∈Gn

X 2
[ i

2k−1 ]







2

a.s.
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Hence, we obtain from Lemma 7.2 that for all 1 ≤ k ≤ p, supE[wn+1(k)4|Fn] < +∞ a.s. Once
again, we deduce from Wei’s Lemma applied to each component of Qn that for all δ > 1/2,

‖Qn‖2 = o(|Tn−1|nδ) a.s.

which completes the proof of (8.3). �

D On the convergence of the covariance estimator

It remains to prove that

lim
n→∞

1

n

∑

k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) = lim
n→∞

Rn

2n
= (p+ 1)ρ a.s.

where
Rn =

∑

k∈Tn−1,p−1

(bVk − Vk)
tJ2(bVk − Vk).

It is not possible to make use of the previous convergence (9.1) because the matrix

J2 =

�

0 1
1 0

�

is not positive definite. Hence, it is necessary to rewrite our proofs. Denote

V ′n = M t
nΣ
−1/2
n−1 (J2⊗ Ip+1)Σ

−1/2
n−1 Mn.

As in the proof of Theorem 5.2, we have the decomposition

V ′n+1+A
′
n = V

′
1 +B

′
n+1+W

′
n+1 (D.1)

where

A ′n =
n
∑

k=p

M t
k

�

J2⊗ (S−1
k−1− S−1

k )
�

Mk,

B ′n+1 = 2
n
∑

k=p

M t
k(J2⊗ S−1

k )∆Mk+1,

W ′n+1 =
n
∑

k=p

∆M t
k+1(J2⊗ S−1

k )∆Mk+1.

First of all, via the same lines as in Appendix B, we obtain that

lim
n→+∞

1

n
W ′n =

1

2
t r((J2⊗ L−1)1/2(Γ⊗ L)(J2⊗ L−1)1/2) a.s.

=
1

2
t r(ΓJ2⊗ Ip+1) = (p+ 1)ρ a.s.
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Next, (B ′n) is a real martingale transform satisfyingB ′n+1 = o(n) a.s. Hence, we find the analogous
of convergence (8.2)

lim
n→+∞

V ′n+1+A
′
n

n
= (p+ 1)ρ a.s. (D.2)

Furthermore, it follows from Wei’s Lemma that for all δ > 1/2,

V ′n = o(nδ) a.s. (D.3)

Therefore, we infer (D.1), (D.2) and (D.3) that

lim
n→+∞

1

n
A ′n = (p+ 1)ρ a.s. (D.4)

Finally, by the same lines as in the proof of the first part of Theorem 5.3, we find that

lim
n→∞

Rn

n
= 2 lim

n→∞

A ′n
n
= 2(p+ 1)ρ a.s.

which completes the proof of convergence (9.2). �
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