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Abstract In this paper, we obtain a large deviation principle for quadratic forms of
Gaussian stationary processes. It is established by the conjunction of a result of Roch
and Silbermann on the spectrum of products of Toeplitz matrices together with the
analysis of large deviations carried out by Gamboa, Rouault and the first author. An
alternative proof of the needed result on Toeplitz matrices, based on semi-classical
analysis, is also provided.
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1 Introduction

For any bounded measurable real function f on the torus T D Œ��; �Œ, the `2.N/
Toeplitz and Hankel operators are respectively defined as

T .f / D
�bf i�j

�
i;j�0 and H.f / D

�bf iCjC1
�
i;j�0 (1)

where .bf n/ stands for the sequence of Fourier coefficients of f . We refer the reader
to the books of Böttcher and Silbermann [2,3] for a general presentation of Toeplitz
operators. A well-known identity between the product T .f /T .g/ and T .fg/ is

T .fg/ � T .f /T .g/ D H.f /H.eg/ (2)
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where eg.x/ D g.�x/. The analogue of identity (2) for finite section Toeplitz
matrices is given by the formula of Widom [14]

Tn.fg/ � Tn.f /Tn.g/ D PnH.f /H.eg/Pn CQnH.ef /H.g/Qn (3)

where the projection Pn and the operatorQn are given by

Pn.x0; x1; x2; : : :/ D .x0; x1; : : : ; xn; 0; : : :/;

Qn.x0; x1; x2; : : :/ D .xn; xn�1; : : : ; x0; 0; : : :/;

and Tn.f / is the finite section of order n � 1 of T .f / which means that Tn.f /
is identified with PnT .f /Pn. In other words, our operators will be considered as
operators on ImP and ImPn where P stands for the projection operator on `2.N/.
We clearly haveQ2

n D Pn, PnQn D QnPn D Qn, and QnTn.f /Qn D Tn.ef /.
The classical Szegö theorem deals with the asymptotic behavior of the spectrum

of a single Toeplitz matrix. It states that if f is a bounded measurable real function
on T, the limiting set of eigenvalues of the sequence .Tn.f // is exactly

�.T .f // D Œessinff; esssupf �;

where �.T .f // denotes the spectrum of the operator T .f /. Moreover, the empirical
spectral measure of .Tn.f // converges to Pf which is the image probability of the
uniform measure on T by the application f . In other words, if �n0; : : : ; �

n
n are the

eigenvalues of Tn.f /, then for any bounded continuous real function '

lim
n!1

1

n

nX
kD0

'.�nk/ D 1

2�

Z

T

'.f .x// dx: (4)

In particular, the maximum eigenvalue of Tn.f / converges to esssupf while the
minimum eigenvalue of Tn.f / converges to essinff . One can find more details in
Sect. 5.2 of [8] or in Sect. 5.4 of [2]. Our purpose is to make use of similar results for
the spectrum of the product of two Toeplitz matrices Tn.f /Tn.g/. Several authors
have investigated the asymptotic behavior of the spectrum of Tn.f /Tn.g/. More
precisely, it was shown in Lemma 5 of [1] or Lemma 2.6 of [13] that if f and g are
two bounded measurable real functions on T, then the empirical spectral measure
associated with the sequence .Tn.f /Tn.g// converges to the limiting measure Pfg .
However, the limiting set of eigenvalues of .Tn.f /Tn.g// is much more difficult
to understand. Via a theorem of Roch and Silbermann, we shall see that, as soon
as f and g � 0 are bounded piecewise continuous real functions, the limiting
set of eigenvalues of .Tn.f /Tn.g// coincides with the spectrum of the limiting
operator T .f /T .g/. In particular, the maximum and the minimum eigenvalues
of Tn.f /Tn.g/ both converge to the maximum and minimum of the spectrum of
T .f /T .g/.

In this paper, we make use of the previous results on Toeplitz operators to
obtain a large deviation principle (LDP) for quadratic forms of Gaussian stationary
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processes. More precisely, consider a centered stationary real Gaussian process
.Xn/ with bounded piecewise continuous spectral density g. It was shown in [1]
an LDP for subsequences of the empirical periodogram .Wn.f // integrated over a
bounded piecewise continuous real function f . We can now deduce a full LDP for
the sequence .Wn.f //.

We also give an alternative proof of the theorem of Roch and Silbermann in
the particular case of Toeplitz operators with continuous symbols. Our approach
is based on semi-classical analysis and scattering theory by construction of
quasimodes which are approximative eigenvectors. We hope that this microlocal
approach can be used in other situations.

The paper is organized as follows. In Sect. 2, we recall a theorem of Roch and
Silbermann. Sect. 3 is devoted to the application in probability. An enlightening
example is treated in Sect. 4. Then, we give our alternative proof of the result of
Roch and Silbermann in the case of Toeplitz operators with continuous symbols.
This result and our functional point of view on Toeplitz operators are given in
Sect. 5. The convergence of the spectrum is proved in Sect. 6. Finally, in Sect. 7,
we propose an alternative proof of Coburn’s theorem dealing with the essential
spectrum of products of Toeplitz operators.

2 Results on Toeplitz Operators

Denote by A the Banach algebra of all sequences .An/ of uniformly bounded linear
operators on ImPn endowed with the sum and the composition term by term, and
the supremum of the operator norm of the elements. Let B be the collection of all
sequences .An/ of A for which one can find two bounded linear operatorsA and eA
in ImP such that

An ! A; A�
n ! A�; QnAnQn ! eA; QnA

�
nQn ! eA�;

where � stands the adjoint operator and ! stands for the strong convergence.
Finally, denote by C the smallest closed subalgebra of A containing the collection
of all sequences .Tn.f // where f are bounded piecewise continuous real functions.
In fact, C is a subalgebra of B and

Tn.f / ! T .f /; QnTn.f /Qn ! T .ef /:

We refer to Sect. 2.5 of [2] for more details on B. We are now in position to state a
theorem of Roch and Silbermann.

Theorem 1 (Roch–Silbermann). Let .Tn/ be a sequence of selfadjoint operators
of C . Moreover, denote the strong limits of Tn and QnTnQn by T and eT ,
respectively. For � 2 R, the following properties are equivalent:

(i) � 2 �.T /[ �.eT /,
(ii) � is the limit of a sequence .�n/ where �n 2 �.Tn/,
(iii) � is the limit of a subsequence .�nk / where �nk 2 �.Tnk /.



412 B. Bercu et al.

Theorem 1 was established in [12] together with several examples of application.
It is given, in its present form, in Theorem 4.16 of [2].

A direct application of this result is as follows. First of all, let us introduce
some notations. Let f and g be two bounded piecewise continuous real func-
tions with g � 0. From Lemma 3 below, the sequence .Tn.g/1=2/ as well as
.Tn.g/

1=2Tn.f /Tn.g/
1=2/ belong to C ,

Tn.g/
1=2Tn.f /Tn.g/

1=2 ! T .g/1=2T .f /T .g/1=2;

QnTn.g/
1=2Tn.f /Tn.g/

1=2Qn ! T .eg/1=2T .ef /T .eg/1=2:

On ImPn, we clearly have

�
�
Tn.f /Tn.g/

� D �
�
Tn.g/

1=2Tn.f /Tn.g/
1=2

�
;

with the same multiplicity. Moreover, by Lemma 7, we also have on ImP

�
�
T .g/1=2T .f /T .g/1=2

� D �
�
T .f /T .g/

� D �
�
T .ef /T .eg/�

D �
�
T .eg/1=2T .ef /T .eg/1=2�:

Denote the maximum and minimum eigenvalues of Tn.f /Tn.g/ by

�nmax.f; g/ D max �
�
Tn.f /Tn.g/

�
;

�nmin.f; g/ D min �
�
Tn.f /Tn.g/

�
:

In addition, denote the extrema of the spectrum of T .f /T .g/ by

�max.f; g/ D max �
�
T .f /T .g/

�
;

�min.f; g/ D min �
�
T .f /T .g/

�
:

One can observe that, in general, we do not know if �max.f; g/ and �min.f; g/ are
eigenvalues.

Corollary 1. Assume that f and g are two bounded piecewise continuous real
functions on T with g � 0. Then, the limiting sets of eigenvalues of the sequence
.Tn.f /Tn.g// are given by �.T .f /T .g//. In particular,

lim
n!1�nmax.f; g/ D �max.f; g/; (5)

lim
n!1�nmin.f; g/ D �min.f; g/: (6)

In Sect. 4, we shall show via an example related to Gaussian autoregressive process
that it is not true in general that for two bounded continuous real functions f and
g, �max.f; g/ D sup.fg/ or �min.f; g/ D inf.fg/. One can also observe that the
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norm of T .g/1=2T .f /T .g/1=2 is not always equal to kfgk1 or kf k1kgk1. The
situation is totally different from the case of a single Toeplitz operator T .f / with
bounded continuous real function as �max.f; 1/ D sup.f / and �min.f; 1/ D inf.f /.

3 Application in Probability

Let .Xn/ be a centered stationary real Gaussian process with bounded piecewise
continuous spectral density g � 0 which means that

EŒXjXk� D 1

2�

Z

T

exp.i.j � k/x/g.x/ dx:

We assume in all the sequel that g is not the zero function. For any bounded
piecewise continuous real function f on the torus T, we are interested in the
asymptotic behavior of

Wn.f / D 1

2�n

Z

T

f .x/

ˇ̌
ˇ̌

nX
jD0

Xj exp.ijx/

ˇ̌
ˇ̌
2

dx: (7)

The purpose of this section is to provide the last step in the analysis of the large
deviation properties of .Wn.f // by establishing an LDP for .Wn.f // in the spirit of
the original work of [1] or of Bryc and Dembo [4]. We refer the reader to the book of
Dembo and Zeitouni [6] for the general theory on large deviations. The covariance
matrix associated with the vector X.n/ D .X0; : : : ; Xn/

t is Tn.g/. Consequently, it
immediately follows from (7) that

Wn.f / D 1

n
X.n/tTn.f /X

.n/ D 1

n
Y .n/tTn.g/

1=2Tn.f /Tn.g/
1=2Y .n/ (8)

where the vector Y .n/ has a Gaussian N .0; In/ distribution. In order to investigate
the large deviation properties of .Wn.f //, it is necessary to calculate the normalized
cumulant generating function given, for all t 2 R, by

Ln.t/ D 1

n
logE

�
exp.ntWn.f //

�
:

For convenience and in all the sequel, we use of the notation that log t D �1 if
t � 0. We deduce from (8) and standard Gaussian calculation that for all t 2 R

Ln.t/ D � 1

2n
log det

�
In � 2tTn.g/

1=2Tn.f /Tn.g/
1=2

�

D � 1

2n

nX
kD0

log.1 � 2t�nk/;

where �n0; : : : ; �
n
n are the eigenvalues of Tn.g/1=2Tn.f /Tn.g/1=2. For all t 2 R, let
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Lfg.t/ D � 1

4�

Z

T

log.1 � 2tf .x/g.x// dx;

and denote by Ifg its Fenchel-Legendre transform

Ifg.x/ D sup
t2R

˚
xt �Lfg.t/

�
:

Furthermore, for all x 2 R, let

Jfg.x/ D

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂:

Ifg.a/C 1

2�min.f; g/
.x � a/ if x 2� � 1; a�

Ifg.x/ if x 2�a; bŒ

Ifg.b/C 1

2�max.f; g/
.x � b/ if x 2 Œb;C1Œ

(9)

where a and b are the extended real numbers given by

a D L0
fg

	
1

2�min.f; g/




if �min.f; g/ < 0 and �min.f; g/ < inf.fg/, a D �1 otherwise, while

b D L0
fg

	
1

2�max.f; g/




if �max.f; g/ > 0 and �max.f; g/ > sup.fg/, b D C1 otherwise. We immediately
deduce from Theorem 1 of [1] together with Corollary 1, that an LDP holds for
.Wn.f //.

Theorem 2. The sequence .Wn.f // satisfies an LDP with good rate function Jfg .
More precisely, for any closed set F � R

lim sup
n!1

1

n
logP.Wn.f / 2 F / � � inf

x2F Jfg.x/;

while for any open set G � R

lim inf
n!1

1

n
logP.Wn.f / 2 G/ � � inf

x2G Jfg.x/:

Remark 1. Denote by � the derivative of Lfg at point zero

� D 1

2�

Z

T

f .x/g.x/dx:
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Then, we have Jfg.�/ D 0 and it follows from Theorem 2 that for all x > �

lim
n!1

1

n
logP.Wn.f / � x/ D �Jfg.x/;

whereas for all x < �

lim
n!1

1

n
logP.Wn.f / � x/ D �Jfg.x/:

4 An Illustrative Example

Let a and � be two real numbers with j� j < 1 and consider the two bounded
continuous real functions f and g given by

f .x/ D a C cos.x/ and g.x/ D 1

1C �2 � 2� cos.x/
:

The goal of this section is to study the limiting set of eigenvalues of the sequence
.Tn.f /Tn.g//. We clearly have kf k1 D jaj C 1 and kgk1 D .1 � j� j/�2. The
function g is simply the spectral density of a Gaussian autoregressive process [1].
If � D 0, g D 1 and the product Tn.f /Tn.g/ reduces to Tn.f /. Consequently,
�max.f; 1/ D a C 1 and �min.f; 1/ D a � 1. If � ¤ 0, denote

a� D � .1C �/

2�
and b� D � .1 � �/

2�
:

It is more convenient to work with the inverse of Tn.g/. As a matter of fact, Tn.g/�1
is a tridiagonal matrix quite similar to Tn.g�1/ except that, at the two diagonal
corners of Tn.g�1/, the coefficient 1C �2 is replaced by 1

Tn.g/
�1 D

0
BBBBB@

1 �� 0 : : :

�� 1C �2 �� : : :

: : : : : : : : : : : :

: : : �� 1C �2 ��
: : : 0 �� 1

1
CCCCCA
:

It is not hard to see that det.Tn.g/�1/ D 1 � �2. In order to find the eigenvalues �
of the product Tn.f /Tn.g/, it is equivalent to calculate the zeros of its characteristic
polynomial which correspond also to the zeros of det.Mn.t// where

Mn.t/ D tTn.f /� Tn.g/
�1
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with t D 1=�. As Tn.f / and Tn.g/�1 are both tridiagonal matrices, we can easily
compute det.Mn.t//. Via the same lines than in Lemma 11 of [1], we find that for n
large enough,Mn.t/ is negative definite only on the domain D D D1 [ D2 with

D1 D
n
�2�2 < p � ��2 and q2 < �4�2.p C �2/

o
;

D2 D
n
p < �2�2 and p < �jqj

o
;

wherep D at�.1C�2/ and q D tC2� . In term of the variable �, the inverses of the
boundaries of D give the extrema of �.T .f /T .g// that is �max.f; g/ and �min.f; g/.
After some tedious but straightforward calculations, we obtain three inverses of the
boundaries

a � 1
.1C �/2

;
a C 1

.1 � �/2
; � 1

4�.1C a�/
:

Two of them coincide with inf.fg/ and sup.fg/. It only depends on the location
of a with respect to �.1 C �2/=.2�/. The last one can be �max.f; g/ > sup.fg/ or
�min.f; g/ < inf.fg/. It only depends on the sign of � as well as on the location of
a with respect to the interval Œa� ; b� �. More precisely, if � > 0 then �max.f; g/ D
sup.fg/ while

�min.f; g/ D 1

�4�.1C a�/
< inf.fg/ D min

� a � 1
.1C �/2

;
aC 1

.1 � �/2
�

if a 2�a� ; b� Œ and �min.f; g/ D inf.fg/ otherwise. Moreover, if � < 0 then
�min.f; g/ D inf.fg/ while

�max.f; g/ D 1

�4�.1C a�/
> sup.fg/ D max

� a � 1
.1C �/2

;
a C 1

.1 � �/2

�

if a 2�a� ; b� Œ and �max.f; g/ D sup.fg/ otherwise.

5 Toeplitz Operators and Functional Calculus

We will prove the following result which implies Corollary 1 for continuous
functions.

Theorem 3. Let f and g be two bounded continuous real functions with g � 0.
For � 2 R, the following properties are equivalent:

(i) � 2 �.T .f /T .g//,
(ii) � is the limit of a sequence .�n/ where �n 2 �.Tn.f /Tn.g//,
(iii) � is the limit of a subsequence .�nk / where �nk 2 �.Tnk .f /Tnk .g//.
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First, let us interpret the projection operators Pn and P as spectral projectors of
the derivation operator and introduce the main ingredients of the proofs.

5.1 A Functional Point of View

We consider the Toeplitz operators T .f / and Tn.f / as the cut-off, in frequencies, of
the operator of multiplication by f . To be more precise, let us introduce the Fourier
transform, F W L2.T/ ! `2.Z/, defined by

.Fu/k D buk D 1

2�

Z �

��
u.x/e�ikxdx:

The operator F is an isomorphism. We denote by F�1 its inverse, and we introduce
the projections bP and bPn as

bP Wbu 2 `2.Z/ 7�! .: : : ; 0; 0;bu0;bu1; : : :/ 2 `2.Z/
bP n Wbu 2 `2.Z/ 7�! .: : : ; 0; 0;bu0;bu1; : : : ;bun; 0; 0; : : :/ 2 `2.Z/:

On the other hand, if we identify f 2L1.T/ with L.f /, the bounded operator
defined on L2.T/ by

u 2 L2.T/ 7�! f u 2 L2.T/;
we have

T .f / D P f P and Tn.f / D PnfPn;

with P D F�1bPF and Pn D F�1bPnF . In the following, we will systematically
identify f with the operator L.f /. Since

1

i

d

dx
.eikx/ D keikx;

the derivation operatorD defined on

H1.T/ D
�

u 2 L2.T/I d

dx
u 2 L2.T/

�
D fu 2 L2.T/I .k Ouk/k 2 `2.Z/g

by

D W u 2 H1.T/ 7�! 1

i

d

dx
u 2 L2.T/

is self-adjoint onL2.T/ and FDF�1 is the diagonal operator .kık;j /k;j2Z. For any
bounded Borel function ', the bounded operator '.D/ is defined with the help of
the functional calculus for self-adjoint operators. It satisfies

'.D/ D F�1M.'/F ;
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whereM.'/ is the operator

bu 2 `2.Z/ 7�! .: : : ; '.k/buk; : : :/ 2 `2.Z/:

In particular, if 1I denotes the indicator function of the interval I , we have

1Œ0;C1Œ.D/ D P and 1Œ0;n�.D/ D 1Œ0;1�.n�1 D/ D Pn:

Moreover, note that if supp.'/ � Œa; b�, we have the trivial properties

1Œa;b�.D/ '.D/ D '.D/ and 1Œa;b�.D/ eikx D eikx 1Œa�k;b�k�.D/:

In the rest of the paper, a function is a oca!b.1/ if, for each c fixed, the function goes
to 0 as a tends to b. In the same way, a function is a Oc.1/ if, for each c fixed, the
function is a O.1/.

5.2 A Commutator Estimate

In this subsection, we recall a standard result of the functional analysis. For � 2 R,
we denote by S�.R/ the class of functions ' in C1.R/ such that

j@ks '.s/j � Ckhsi��k;

for k � 0. Here hxi D .1C jxj2/1=2.
Lemma 1 (Lemma C.3.2 of [7]). Let A;B be self-adjoint operators on a Hilbert
space with B and ŒA;B� bounded. If ' 2 S�.R/ with � < 1, then

kŒ'.A/; B�k � C'kŒA;B�k:

Here, ŒA;B� D AB � BA denotes the commutator. The constant C' only depends
on '.

Applying this lemma, we immediately obtain

Lemma 2. Let f 2 C0.T/ and ' 2 S�.R/ with � � 0. Then

Œ'."D/; f � D o"!0.1/:

Proof. By Weierstrass’s theorem, there exist fk 2C1.T/ satisfying fk ! f in
L1.T/. Then, viewed as operators, we have fk ! f . Remark that Œ"D; fk� D
�"if 0

k . From Lemma 1, we obtain

kŒ'."D/; fk�k � "C'kf 0
kk1:
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Then, using the assumption that ' is bounded,

Œ'."D/; f � D Œ'."D/; fk�C ok!1.1/ D Ok."/C ok!1.1/

D o"!0.1/;

since Œ'."D/; f � does not depend on k. ut

5.3 Essential Spectrum of the Product of Toeplitz Operators

Here, we recall, in our setting, a consequence of a theorem of Coburn [5] concerning
the essential spectrum of the product of Toeplitz operators. This result has been
extended by Douglas to a more general framework (see [10, Theorem 4.5.10]). We
shall give in Sect. 7 an alternative proof of the following theorem, more related to
our approach.

Theorem 4 (Coburn). Let f and g be two bounded continuous real functions with
g � 0. The bounded self-adjoint operator T .g/1=2T .f /T .g/1=2 satisfies on ImP

�ess
�
T .g/1=2T .f /T .g/1=2

� D �
inf.fg/; sup.fg/

�
:

Here, �ess.A/ denotes the essential spectrum of A.

In Theorem 4, the operator T .g/1=2T .f /T .g/1=2 is viewed as an operator on
ImP . On L2.T/, this operator is a block diagonal operator with respect to the
orthogonal sum L2 D ImP ˚? Im.1 � P/ and is equal to 0 on Im.1 � P/. In
particular, we have

Remark 2. If the operator T .g/1=2T .f /T .g/1=2 is viewed on L2.T/, we have

�ess
�
T .g/1=2T .f /T .g/1=2

� D �
inf.fg/; sup.fg/

� [ f0g:

6 Proof of Theorem 3

The goal of this section is to prove Theorem 3. First of all, one can observe that part
(ii) clearly implies (iii). In the next subsection, we first show that (i) implies (ii).

6.1 The Implication (i) Gives (ii)

Lemma 3. Let f and g be two bounded piecewise continuous real functions with
g � 0. Then,
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Tn.g/
1=2Tn.f /Tn.g/

1=2 �! T .g/1=2T .f /T .g/1=2

strongly on L2.T/. If � belongs to the spectrum of T .f /T .g/ on ImP , then there
exists an eigenvalue �n of Tn.f /Tn.g/ on ImPn such that �n ! �.

Proof. Since Pn �!P , it follows from Lemma III.3.8 of [9] that for all f 2
L1.T/, Tn.f / �! T .f /. In particular, from Problem VI.14 of [11] (see also
Theorem VI.9 of [11]), Tn.g/1=2 �! T .g/1=2. Consequently, we deduce from
Lemma III.3.8 of [9] that

Tn.g/
1=2Tn.f /Tn.g/

1=2 �! T .g/1=2T .f /T .g/1=2; (10)

on L2.T/. In particular, we obtain on ImP

Tn.g/
1=2Tn.f /Tn.g/

1=2 CM.P � Pn/ �! T .g/1=2T .f /T .g/1=2;

for all M 2 R. We choose � D kf k1kgk1 and M D � C 1. Therefore, it
follows from Corollary VIII.1.6 together with Theorem VIII.1.14 of [9] that, for
each � belonging to the spectrum �.T .f /T .g// D �.T .g/1=2T .f /T .g/1=2/ on
ImP , there exists an eigenvalue �n of the matrix

Tn.g/
1=2Tn.f /Tn.g/

1=2 CM.P � Pn/;

on ImP such that �n ! �. As kT .g/1=2T .f /T .g/1=2k � �, we necessarily have
� 2 Œ��;�� and then M � j�j C 1. In particular, for n large enough,M > j�nj C
1=2. Therefore, �n is an eigenvalue of Tn.g/1=2Tn.f /Tn.g/1=2 on ImPn because

Tn.g/
1=2Tn.f /Tn.g/

1=2 CM.P �Pn/ D Tn.g/
1=2Tn.f /Tn.g/

1=2 ˚? M.P �Pn/;

is a block diagonal operator with respect to the orthogonal sum ImP D ImPn ˚?
Im.P � Pn/: ut

6.2 The Implication (iii) Gives (i)

Let �N be a sequence of eigenvalues of TN .f /TN .g/ such that �N ! � 2 R.
Here N is a subsequence of N and we have to show that � is in the spectrum of
T .f /T .g/. From Theorem 4, we know that Œinf.fg/; sup.fg/� is always inside the
spectrum of T .f /T .g/. Thus, we can assume that

� … �
inf.fg/; sup.fg/

�
: (11)

By Weierstrass’s theorem, there exists a sequence of functions .fk/ 2 C1.T/
such that fk !f in L1.T/ and supp bfk � Œ�k; k�. We also consider .gk/
a sequence corresponding to g with the same properties mutatis mutandis. In
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particular, for all n 2 N,

Tn.f / D Tn.fk/C ok!1.1/ and T .f / D T .fk/C ok!1.1/: (12)

Recall that, by definition, a ok!1.1/ is uniform with respect to n.
Finally, let uN 2 ImPN be an eigenvector of TN .f /TN .g/ associated with �N

and satisfying kuN k D 1. From (12),

TN .f /TN .g/uN D �N uN D �uN C oN!1.1/ (13)

TN .fk/TN .gk/uN D �uN C oN!1.1/C ok!1.1/: (14)

In the following, we denoteDn D n�1D.

6.2.1 Localization of the Eigenvectors

Lemma 4. Let ' 2 C1
0 .�0; 1Œ/. Then, in L2.T/ norm,

'.DN /uN D oN!1.1/:

Proof. From Lemma 2, we have

'.DN /TN .f / D '.DN /1Œ0;1�.DN /f 1Œ0;1�.DN / D '.DN /f 1Œ0;1�.DN /

D f '.DN /1Œ0;1�.DN /C oN!1.1/

D f '.DN /C oN!1.1/: (15)

Applying two times this estimate, we obtain

'.DN /TN .f /TN .g/uN D f '.DN /TN .g/uN C oN!1.1/

D fg'.DN /uN C oN!1.1/:

Then, (13) gives
.fg � �/'.DN /uN D oN!1.1/:

Since � … Œinf.fg/; sup.fg/�, the function .fg � �/�1 belongs to L1.T/ and the
lemma follows from the last equation. ut
Now, we take ' 2 C1

0 .�0; 1Œ; Œ0; 1�/ such that ' D 1 near Œ"; 1 � "� for " > 0

small enough (we choose " D 1=8). Let '� 2 C1
0 .Œ�"; 2"�; Œ0; 1�/ and 'C 2

C1
0 .Œ1 � 2"; 1C "�; Œ0; 1�/ be two functions such that

'� C ' C 'C D 1;

in the neighborhood of Œ0; 1�. Set
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uṄ D '˙.DN /uN D '˙.DN /1Œ0;1�.DN /uN : (16)

As kuN k D 1, it follows from Lemma 4 that

ku�
N C uC

N k D 1C oN!1.1/: (17)

In particular, we can assume, up to the extraction of a subsequence, that

8N ku�
N k � 1=3 or 8N kuC

N k � 1=3:

In the next section, we will suppose that

ku�
N k � 1=3: (18)

The case kuC
N k � 1=3 follows essentially the same lines and is treated in Sect. 6.2.3.

But before, we show that u�
N and uC

N are both quasimodes of TN .f /TN .g/ (this
means that they are eigenvectors modulo a small term).

Lemma 5. We have

TN .fk/TN .gk/uṄ D �uṄ C ok!1.1/C okN!1.1/:

Proof. As in (15), using Lemma 2, we get

TN .fk/TN .gk/uṄ D 1Œ0;1�.DN /fk1Œ0;1�.DN /gk1Œ0;1�.DN /'
˙.DN /uN

D 1Œ0;1�.DN /fk1Œ0;1�.DN /gk'
˙.DN /1Œ0;1�.DN /uN

D 1Œ0;1�.DN /fk1Œ0;1�.DN /'
˙.DN /gk1Œ0;1�.DN /uN C okN!1.1/

D 1Œ0;1�.DN /'
˙.DN /fk1Œ0;1�.DN /gk1Œ0;1�.DN /uN C okN!1.1/

D '˙.DN /TN .fk/TN .gk/uN C okN!1.1/: (19)

The lemma follows from (14), (16) and the last identity. ut

6.2.2 Concentration Near the Low Frequencies

Here, we assume (18) and we prove that u�
N , viewed as an element of ImP , is a

quasimode of T .fk/T .gk/.

Lemma 6. For 4k � N , we have

T .fk/T .gk/u
�
N D TN .fk/TN .gk/u

�
N :

Remark 3. In fact, for 4k � N � n, we have
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Tn.fk/Tn.gk/u
�
N D TN .fk/TN .gk/u

�
N :

Proof. Recall that, if u; v are two functions of L2.T/ such that suppbu � Œa; b� and
suppbv � Œc; d �, then supp buv � Œa C c; b C d�. By definition,

T .fk/T .gk/u
�
N D PfkPgkP'

�.DN /uN D PfkPgkPN'
�.DN /uN : (20)

Since supp bgk � Œ�k; k� and supp F .PN'
�.DN /uN / � Œ0; N=4�, the Fourier

transform of the function gkPN'�.DN /uN is supported inside Œ�k;N=4 C k� �
Œ�k;N �. In particular,

PgkPN'
�.DN /uN D PNgkPN'

�.DN /uN ; (21)

and the Fourier transform of this function is supported inside Œ0; N=4Ck�. As before,
the Fourier transform of

fkPNgkPN'
�.DN /uN

is supported inside Œ�k;N=4C 2k� � Œ�k;N �. Then

PfkPNgkPN'
�.DN /uN D PNfkPNgkPN'

�.DN /uN : (22)

The lemma follows from (20) to (22). ut
From (12), Lemmas 5 and 6, we get

T .f /T .g/u�
N D �u�

N C ok!1.1/C okN!1.1/; (23)

for 4k � N . If � … �.T .f /T .g//, the operator T .f /T .g/ � � is invertible and
then

u�
N D ok!1.1/C okN!1.1/:

From (18), we obtain 1=3 � ok!1.1/CokN!1.1/. Taking k large enough and then
N large enough, it is clear that this is impossible. Thus,

� 2 �.T .f /T .g//;

which implies Theorem 3 under Assumption (18).

6.2.3 Concentration Near the High Frequencies

We replace the Assumption (18) by kuC
N k � 1=3. Let J be the isometry f 7! ef

in L2.T/. One can observe that J.uv/ D J.u/J.v/. Using the notation PŒa;b� D
1Œa;b�.D/, we have PŒa;b�J D JPŒ�b;�a� and PŒa;b�eicx D eicxPŒa�c;b�c� . Combining
these identities with Lemma 5, we get
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TN .Jfk/TN .Jgk/e
iNx.J uC

N / D PŒ0;N �.Jfk/PŒ0;N �.Jgk/PŒ0;N �e
iNx.J uC

N /

D eiNxPŒ�N;0�.Jfk/PŒ�N;0�.Jgk/PŒ�N;0�.J uC
N /

D eiNxJPŒ0;N �fkPŒ0;N �gkPŒ0;N �u
C
N

D �eiNx.J uC
N /C ok!1.1/C okN!1.1/: (24)

In particular, eu�
N D eiNx.J uC

N / satisfies keu�
N k � 1=3,

TN .Jfk/TN .Jgk/eu�
N D �eu�

N C ok!1.1/C okN!1.1/;

and the support of the Fourier transform of eu�
N is inside Œ0; N=4�. Hence, we can

apply the method developed in the case ku�
N k � 1=3. The unique difference is that

f; g are replaced by ef ;eg. Then, we obtain

� 2 ��
T .ef /T .eg/�:

Theorem 3 follows from the following lemma and �.T .f /T .g// D �.T .g/T .f //

(the spectrum of T .f /T .g/ is real and .T .f /T .g/ � z/� D T .g/T .f / � z).

Lemma 7. Let f; g 2 L1.T/. Then

�
�
T .ef /T .eg/� D �

�
T .g/T .f /

�
:

Proof. For A a bounded linear operator on L2, we define At by

.Atu; v/ D .u; Av/;

for all u; v 2 L2. Simple calculi give f t D f , P t
Œa;b� D PŒ�b;�a� , .AB/t D BtAt

and then
T .f /t D �

PŒ0;C1ŒfPŒ0;C1Œ

�t D P��1;0�fP��1;0� :

By the same way, since J D J � D J�1,

JP��1;0�fP��1;0�J D PŒ0;C1Œ
ef PŒ0;C1Œ D T .ef /:

Combining these identities concerning t and J , we get

J.T .ef /T .eg//tJ�1 D J
�
P��1;0�egP��1;0�

��
P��1;0�

ef P��1;0�

�
J

D T .g/T .f /: (25)

Since JAtJ � z D J.A� z/t J , A and JAtJ have the same spectrum and the lemma
follows. ut
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7 Proof of Theorem 4

We give here an alternative proof of Coburn’s theorem. Let  2 C1.R/ satisfying
 D 1 near Œ2;C1Œ and  D 0 near � � 1; 1�. For " > 0, we have on ImP

T .g/1=2T .f /T .g/1=2 D T .g/1=2 ."D/T .f / ."D/T .g/1=2 C eR"
D T .g/1=2 ."D/f  ."D/T .g/1=2 C eR"; (26)

where

eR" D T .g/1=2.1� ."D//T .f / ."D/T .g/1=2CT .g/1=2T .f /.1� ."D//T .g/1=2;

is a self-adjoint operator of finite rank. Recall that if A � 0 is a bounded operator
with kAk � 1, then

A1=2 D
C1X
jD0

cj .1 � A/j ;

where k1 � Ak � 1 and
P

j�0 jcj j � 2 < C1. On the other hand, Lemma 2
implies

T .g/ ."D/ D PgP ."D/ D Pg ."D/ D P ."D/g C o"!0.1/

D  ."D/g C o"!0.1/; (27)

Then, for a fixed ı > 0 such that kT .g/k � kgk1 < ı�1, we have

T .g/1=2 ."D/ D ı�1=2T .ıg/1=2 ."D/

D ı�1=2
C1X
jD0

cj .1 � T .ıg//j ."D/

D ı�1=2
JX
jD0

cj .1 � T .ıg//j ."D/C oJ!1.1/

D ı�1=2 ."D/
JX
jD0

cj .1 � ıg/j C oJ!1.1/C oJ"!0.1/

D ı�1=2 ."D/.ıg/1=2 C oJ!1.1/C oJ"!0.1/

D  ."D/g1=2 C o"!0.1/; (28)

since these quantities do not depend on J . Using this identity and its adjoint, (26)
becomes
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T .g/1=2T .f /T .g/1=2 D  ."D/fg ."D/C eR" C o"!0.1/

D T .fg/CR" C e"; (29)

where e" D o"!0.1/ and

R" D eR" C . ."D/ � 1/T .fg/ ."D/C T .fg/. ."D/ � 1/;

is a self-adjoint operator of finite rank. In particular, e" is a self-adjoint operator.
Since, on ImP

inf.fg/ � T .fg/ � sup.fg/;

we get �.T .fg/Ce"/ � Œinf.fg/�o"!0.1/; sup.fg/Co"!0.1/�. AsR" is of finite
rank, we obtain, from Weyl’s theorem [11, Theorem S.13],

�ess
�
T .g/1=2T .f /T .g/1=2

� D �ess.T .fg/C e"/

� Œinf.fg/ � o"!0.1/; sup.fg/C o"!0.1/�:

As the essential spectrum of T .g/1=2T .f /T .g/1=2 does not depend on ", we get

�ess
�
T .g/1=2T .f /T .g/1=2

� � Œinf.fg/; sup.fg/�; (30)

which is the first inclusion of Coburn’s theorem.
Now, let ' 2 C1.Œ�1; 1�; Œ0; 1�/ with k'kL2 D 1. For x0 2 T and ˛; ˇ 2 N, we

set
u D ˛1=2'

�
˛.x � x0/

�
eiˇx and v D P u 2 ImP;

which satisfies kuk D 1. We have

.1 � P/u D ˛1=21��1;0�.D/e
iˇx'

�
˛.x � x0/

�

D ˛1=2eiˇx1��1;�ˇ�.D/'
�
˛.x � x0/

�

D ˛1=2eiˇx1��1;�ˇ�.D/.D C i/�M .D C i/M'
�
˛.x � x0/

�

D O
�
ˇ�M˛M

�
; (31)

in L2 norm for anyM 2 N. Moreover, for a continuous function `, we have

`u D `.x0/˛
1=2'

�
˛.x � x0/

�
eiˇx C o˛!1.1/; (32)

in L2 norm. Using that kT .`/1=2k � k`k1=21 , for all function ` 2 L1 with ` � 0, we
get
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T .f /T .g/v D PfPgP u D PfPgu C O
�
˛ˇ�1�

D g.x0/PfP u C O
�
˛ˇ�1� C o˛!1.1/

D g.x0/Pf u C O
�
˛ˇ�1� C o˛!1.1/

D .fg/.x0/P u C O
�
˛ˇ�1� C o˛!1.1/

D .fg/.x0/v C O
�
˛ˇ�1� C o˛!1.1/: (33)

Taking ˇ D ˛2 ! C1, (31) implies kvk D 1C o˛!1.1/. On the other hand, (33)
leads to

T .f /T .g/v D .fg/.x0/v C o˛!1.1/:

Then, .fg/.x0/ 2 �.T .f /T .g// D �.T .g/1=2T .f /T .g/1=2/. Therefore,

�
inf.fg/; sup.fg/

� � �
�
T .g/1=2T .f /T .g/1=2

�
: (34)

Recall that the essential spectrum of a self-adjoint bounded operator on an infinite
Hilbert space is never empty. Therefore, if inf.fg/ D sup.fg/, (30) implies the
theorem.

Assume now that inf.fg/ < sup.fg/. Then Œinf.fg/; sup.fg/� is an interval
with non empty interior. From the definition of the essential spectrum, this interval
is necessarily inside the essential spectrum of T .g/1=2T .f /T .g/1=2. This achieves
the proof of the second inclusion of Coburn’s theorem.
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