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Abstract We study the asymptotic behavior of the weighted least squares estimators of the
unknown parameters of bifurcating integer-valued autoregressive processes. Under suitable
assumptions on the immigration, we establish the almost sure convergence of our estimators,
together with a quadratic strong law and central limit theorems. All our investigation relies
on asymptotic results for vector-valued martingales.
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1 Introduction

Bifurcating integer-valued autoregressive (BINAR) processes are an adaptation of integer-
valued autoregressive (INAR) processes to binary tree structured data. It can also be seen as
the combination of INAR processes and bifurcating autoregressive (BAR) processes. BAR
processes have been first introduced by Cowan and Staudte (1986) while INAR processes
have been first investigated by Alzaid and Al-Osh (1987), (1990) and McKenzie (1985).
BINAR processes take into account both inherited and environmental effects to explain the
evolution of the integer-valued characteristic under study. To the best of our knowledge, this
is the first paper devoted to BINAR processes.

We can easily see cell division as an example of binary tree structure, the integer-valued
characteristic could then be, as an example, the number of parasites in a cell. Keeping this
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example in mind, we consider that each time a cell is dividing, the two sister cells inherits both
some parasites depending on the number of parasites of the mother, and some parasites from
the environment. Bansaye (2008) used a Kimmel branching process to model this division
process. This Kimmel process can be seen as the inheritance part of our BINAR process,
where the parasites in the mother cell divide and then the offspring are distributed among the
two sister cell. However, this model does not allow any environmental effect.

The first-order BINAR process is defined as follows. The initial cell is labelled 1 and the
offspring of the cell labelled n are labelled 2n and 2n + 1. Denote by Xn the integer-valued
characteristic of individual n. Then, the first-order BINAR process is given, for all n ≥ 1, by{

X2n = a ◦ Xn + ε2n

X2n+1 = b ◦ Xn + ε2n+1
(1.1)

where the thinning operator ◦ will be defined in (2.1). The immigration sequence
(ε2n, ε2n+1)n≥1 represents the environmental effect, while the thinning operator represents
the inherited effect. The example of the cell division incites us to suppose that ε2n ans ε2n+1

are correlated since the environmental effect on two sister cells can reasonably be seen as
correlated.

The purpose of this paper is to study the asymptotic behavior of the weighted least squares
(WLS) estimators of first-order BINAR process via a martingale approach. The martingale
approach has been first proposed by Bercu et al. (2009). We also refer to Wei and Winnicki
(1990) and Winnicki (1991) for the WLS estimation of parameters associated to branching
processes. We shall make use of the strong law of large numbers Duflo (1997) as well as
the central limit theorem (Duflo 1997; Hall and Heyde 1980) for martingales, in order to
investigate the asymptotic behavior of the WLS estimators, as previously done by Basawa
and Zhou (2004), Zhou and Basawa (2005), Zhou and Basawa (2005). In contrast with
Bercu et al. (2009), we investigate the asymptotic behavior of a WLS estimator instead of
a least squares one. On the one hand, it enables us to reduce the moment assumption on
the immigration sequence. On the other hand, it also allows us to reduce the asymptotic
variance in the central limit theorem for our estimates. This gain of efficiency is entirely due
to the weighted sequence which was inspired by Wei and Winnicki (1990). The fact that we
consider an integer-valued process also forced us to adapt the proofs because of the thinning
operator which needs to be manipulated more carefully than the classical product.

Several points of view appeared for both BAR and INAR processes and we tried to make
a link between those approaches. On the one hand, for the BAR side of the BINAR process,
we had a look to classical BAR studies as done by Huggins and Basawa (1999), Huggins and
Basawa (2000) and Huggins and Staudte (1994) who studied the evolution of cell diameters
and lifetimes, but also to bifurcating Markov chains models introduced by Guyon (2007) and
used in Delmas and Marsalle (2010). However, we did not put aside the analogy with the
Galton–Watson processes as studied in Delmas and Marsalle (2010) and Heyde and Seneta
(1972). We also refer to the interesting contribution of De Saporta et al. (2011), De Saporta et
al. (2012), De Saporta et al. (2014) dealing with statistical inference for BAR processes with
missing data. On the other hand, concerning the INAR side of the BINAR process, we used
the classical INAR definition but also had a look to Bansaye (2008), Bansaye and Tran (2011)
who studied an integer-valued process on a binary tree without using an INAR model, and
also Kachour and Yao (2009) who decided to study an integer-valued autoregressive process
by a rounding approach instead of the classical INAR one. The approach of this paper has also
been used for the study of random coefficient bifurcating autoregressive (RCBAR) process
as in Blandin (2014) and Bercu and Blandin (2014). RCBAR processes is the combination of
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BAR processes and random coefficient autoregressive processes. They have been previously
investigated by Nicholls and Quinn (1980), Nicholls and Quinn (1982), Quinn and Nicholls
(1981).

The paper is organised as follows. Section 2 is devoted to the presentation of the first-order
BINAR process while Sect. 3 deals with the WLS estimators of the unknown parameters.
Section 4 allows us to detail our approach based on martingales. Section 5 gathers the main
results about the asymptotic properties of the WLS estimators. More precisely, we will
propose the almost sure convergence, the quadratic strong law and the central limit theorem
for our estimates. The rest of the paper is devoted to the proofs of our main results.

2 Bifurcating integer-valued autoregressive processes

Consider the first-order BINAR process given by (1.1) where the initial integer-valued state
X1 is the ancestor of the process and (ε2n, ε2n+1) represents the immigration which takes
nonnegative integer values. In all the sequel, we shall assume that E[X8

1] < ∞. Moreover,

a ◦ Xn =
Xn∑

i=1

Yn,i and b ◦ Xn =
Xn∑

i=1

Zn,i (2.1)

where (Yn,i )n,i≥1 and (Zn,i )n,i≥1 are two independent sequences of i.i.d., nonnegative integer-
valued random variables with means a and b and positive variances σ 2

a and σ 2
b respectively.

Moreover, μ4
a , μ4

b and τ 6
a , τ 6

b are the fourth-order and the sixth-order centered moments of
(Yn,i ) and (Zn,i ), respectively, and (Yn,i ) and (Zn,i ) admit eighth-order moments. We also
assume that the two offspring sequences (Yn,i ) and (Zn,i ) are independent of the immigration
(ε2n, ε2n+1). In addition, as in the literature concerning BAR processes, we shall assume that

0 < max(a, b) < 1.

One can see this BINAR process as a first-order integer-valued autoregressive process on a
binary tree, where each node represents an individual, node 1 being the original ancestor. For
all n ≥ 1, denote the n-th generation by

Gn = {2n, 2n + 1, . . . , 2n+1 − 1}.
In particular, G0 = {1} is the initial generation and G1 = {2, 3} is the first generation of
offspring from the first ancestor. Let Grn be the generation of individual n, which means that
rn = [log2(n)] (Fig. 1). Recall that the two offspring of individual n are labelled 2n and
2n + 1, or conversely, the mother of individual n is [n/2] where [x] stands for the largest
integer less than or equal to x . Finally, denote by

Tn =
n⋃

k=0

Gk

the sub-tree of all individuals from the original individual up to the n-th generation. On can
observe that the cardinality |Gn | of Gn is 2n while that of Tn is |Tn | = 2n+1 − 1.

3 Weighted least-squares estimation

Denote by F = (Fn)n≥0 the natural filtration associated with the first-order BINAR process,
which means that Fn is the σ -algebra generated by all individuals up to the n-th generation,
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Fig. 1 The tree associated with the BINAR

in other words Fn = σ {Xk, k ∈ Tn}. We will assume in all the sequel that, for all n ≥ 0 and
for all k ∈ Gn , {

E[ε2k |Fn] = c a.s.

E[ε2k+1|Fn] = d a.s.

Consequently, we deduce from (1.1) that, for all n ≥ 0 and for all k ∈ Gn ,{
X2k = aXk + c + V2k,

X2k+1 = bXk + d + V2k+1,
(3.1)

where V2k = X2k − E[X2k |Fn] and V2k+1 = X2k+1 − E[X2k+1|Fn]. Therefore, the two
relations given by (3.1) can be rewritten in the matrix form

χn = θ t�n + Wn (3.2)

where

χn =
(

X2n

X2n+1

)
, �n =

(
Xn

1

)
, Wn =

(
V2n

V2n+1

)
,

and the matrix parameter

θ =
(

a b
c d

)
.

Our goal is to estimate θ from the observation of all individuals up to Tn . We propose to
make use of the WLS estimator θ̂n of θ which minimizes

�n(θ) = 1

2

∑
k∈Tn−1

1

ck
‖χk − θ t�k‖2

where the choice of the weighting sequence (cn)n≥1 is crucial. We shall choose cn = 1 + Xn

and we will go back to this suitable choice in Sect. 4. Consequently, we obviously have for
all n ≥ 1

θ̂n = S−1
n−1

∑
k∈Tn−1

1

ck
�kχ

t
k (3.3)
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where

Sn =
∑
k∈Tn

1

ck
�k�

t
k .

In order to avoid useless invertibility assumption, we shall assume, without loss of generality,
that for all n ≥ 0, Sn is invertible. Otherwise, we only have to add the identity matrix of
order 2, I2 to Sn . In all what follows, we shall make a slight abuse of notation by identifying
θ as well as θ̂n to

vec(θ) =

⎛
⎜⎜⎝

a
c
b
d

⎞
⎟⎟⎠ and vec(θ̂n) =

⎛
⎜⎜⎝

ân

ĉn

b̂n

d̂n

⎞
⎟⎟⎠ .

Therefore, we deduce from (3.3) that

θ̂n = 	−1
n−1

∑
k∈Tn−1

1

ck
vec(�kχ

t
k),

= 	−1
n−1

∑
k∈Tn−1

1

ck

⎛
⎜⎜⎝

Xk X2k

X2k

Xk X2k+1

X2k+1

⎞
⎟⎟⎠

where 	n = I2 ⊗ Sn and ⊗ stands for the standard Kronecker product. Consequently, (3.2)
yields to

θ̂n − θ = 	−1
n−1

∑
k∈Tn−1

1

ck
vec(�k W t

k ),

= 	−1
n−1

∑
k∈Tn−1

1

ck

⎛
⎜⎜⎝

Xk V2k

V2k

Xk V2k+1

V2k+1

⎞
⎟⎟⎠ . (3.4)

In all the sequel, we shall make use of the following moment hypotheses.

(H.1) For all n ≥ 0 and for all k ∈ Gn

E[ε2k |Fn] = c and E[ε2k+1|Fn] = d a.s.

(H.2) For all n ≥ 0 and for all k ∈ Gn

Var[ε2k |Fn] = σ 2
c > 0 and Var[ε2k+1|Fn] = σ 2

d > 0 a.s.

(H.3) For all n ≥ 0 and for all k, l ∈ Gn+1, if [k/2] �= [l/2], εk and εl are conditionally
independent given Fn , while otherwise it exists ρ2 < σ 2

c σ 2
d such that, for all

k ∈ Gn

E[(ε2k − c)(ε2k+1 − d)|Fn] = ρ a.s.

(H.4) One can find μ4
c > σ 4

c and μ4
d > σ 4

d such that, for all n ≥ 0 and for all k ∈ Gn

E
[
(ε2k − c)4 |Fn

] = μ4
c and E

[
(ε2k+1 − d)4 |Fn

] = μ4
d a.s.
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In addition, it exists ν4 ≤ μ4
cμ

4
d such that, for all k ∈ Gn

E[(ε2k − c)2(ε2k+1 − d)2|Fn] = ν2 a.s.

(H.5) One can find τ 6
c > 0 and τ 6

d > 0 such that

sup
n≥1

sup
k∈Gn

E[ε6
2k |Fn] = τ 6

c and sup
n≥1

sup
k∈Gn

E[ε6
2k+1|Fn] = τ 6

d a.s.

sup
n≥2

E[ε8
n] < ∞

It follows from hypothesis (H.1) that V2n and V2n+1 can be rewritten as

V2n =
Xn∑

i=1

(Yn,i − a) + (ε2n − c) and V2n+1 =
Xn∑

i=1

(Zn,i − b) + (ε2n − d).

Hence, under assumption (H.2), we have for all n ≥ 0 and for all k ∈ Gn

E[V 2
2k |Fn] = σ 2

a Xk + σ 2
c and E[V 2

2k+1|Fn] = σ 2
b Xk + σ 2

d a.s. (3.5)

Consequently, if we choose cn = 1 + Xn for all n ≥ 1, we clearly have for all k ∈ Gn

E
[

V 2
2k

∣∣Fn
] ≤ max(σ 2

a , σ 2
c )ck and E

[
V 2

2k+1

∣∣Fn
] ≤ max(σ 2

b , σ 2
d )ck a.s.

It is exactly the reason why we have chosen this weighting sequence into (3.3). Similar WLS
estimation approach for branching processes with immigration may be found in Wei and
Winnicki (1990) and Winnicki (1991). We can also observe that, for all k ∈ Gn , under the
assumption (H.3)

ρ = E[V2k V2k+1|Fn] a.s.

Hence, we propose to estimate the conditional covariance ρ by

ρ̂n = 1

|Tn−1|
∑

k∈Tn−1

V̂2k V̂2k+1 (3.6)

where for all k ∈ Gn , {
V̂2k = X2k − ân Xk − ĉn,

V̂2k+1 = X2k+1 − b̂n Xk − d̂n .

For all n ≥ 0 and for all k ∈ Gn , denote v2k = V 2
2k − E[V 2

2k |Fn]. We deduce from (3.5) that
for all n ≥ 1

V 2
2n = ηt�n + v2n

where ηt = (
σ 2

a σ 2
c

)
. It leads us to estimate the vector of variances η by the WLS estimator

η̂n = Q−1
n−1

∑
k∈Tn−1

1

dk
V̂ 2

2k�k (3.7)

where

Qn =
∑
k∈Tn

1

dk
�k�

t
k
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and the weighting sequence (dn)n≥1 is given, for all n ≥ 1, by dn = (1 + Xn)2. This choice
is due to the fact that for all n ≥ 1 and for all k ∈ Gn

E[v2
2k |Fn] = E[V 4

2k |Fn] − (
E[V 2

2k |Fn])2 a.s.

= 2σ 4
a X2

k + (μ4
a − 3σ 4

a + 4σ 2
a σ 2

c )Xk + μ4
c − σ 4

c a.s. (3.8)

where we recall that μ4
a is the fourth-order centered moment of (Yn,i ). Consequently, as

dn ≥ 1, we clearly have for all n ≥ 1 and for all k ∈ Gn

E[v2
2k |Fn] ≤ (μ4

a − σ 4
a + 4σ 2

a σ 2
c + μ4

c − σ 4
c )dk a.s.

We have a similar WLS estimator ζ̂n of the vector of variances ζ t = (
σ 2

b σ 2
d

)
by replacing

V̂ 2
2k by V̂ 2

2k+1 into (3.7).

4 A martingale approach

In order to establish all the asymptotic properties of our estimators, we shall make use of a
martingale approach. For all n ≥ 1, denote

Mn =
∑

k∈Tn−1

1

ck

⎛
⎜⎜⎝

Xk V2k

V2k

Xk V2k+1

V2k+1

⎞
⎟⎟⎠ .

We can clearly rewrite (3.4) as
θ̂n − θ = 	−1

n−1 Mn . (4.1)

As in Bercu et al. (2009), we make use of the notation Mn since it appears that (Mn)n≥1 a
martingale. This fact is a crucial point of our study and it justifies the vector notation since
most of asymptotic results for martingales were established for vector-valued martingales.
Let us rewrite Mn in order to emphasize its martingale quality. Let �n = I2 ⊗ ϕn where ϕn

is the matrix of dimension 2 × 2n given by

ϕn =

⎛
⎜⎜⎝

X2n√
c2n

X2n+1√
c2n+1

. . .
X2n+1−1√

c2n+1−1
1√
c2n

1√
c2n+1

. . .
1√

c2n+1−1

⎞
⎟⎟⎠ .

It represents the individuals of the n-th generation which is also the collection of all �k/
√

ck

where k belongs to Gn . Let ξn be the random vector of dimension 2n

ξ t
n =

(
V2n√
c2n−1

V2n+2√
c2n−1+1

. . .
V2n+1−2√

c2n−1

V2n+1√
c2n−1

V2n+3√
c2n−1+1

. . .
V2n+1−1√

c2n−1

)
.

The vector ξn gathers the noise variables of Gn . The special ordering separating odd and even
indices has been made in Bercu et al. (2009) so that Mn can be rewritten as

Mn =
n∑

k=1

�k−1ξk

Under (H.1), we clearly have for all n ≥ 0, E[ξn+1|Fn] = 0 a.s. and �n is Fn-measurable.
In addition it is not hard to see that under (H.1) to (H.3), (Mn) is a locally square integrable
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vector martingale with increasing process given, for all n ≥ 1, by

〈M〉n =
n−1∑
k=0

�kE[ξk+1ξ
t
k+1|Fk]� t

k =
n−1∑
k=0

Lk a.s. (4.2)

where

Lk =
∑
i∈Gk

1

c2
i

(
σ 2

a Xi + σ 2
c ρ

ρ σ 2
b Xi + σ 2

d

)
⊗
(

X2
i Xi

Xi 1

)
. (4.3)

It is necessary to establish the convergence of 〈M〉n , properly normalized, in order to prove
the asymptotic results for our BINAR estimators θ̂n , η̂n and ζ̂n . Since the sizes of �n and ξn

double at each generation, we have to adapt the proof of vector-valued martingale convergence
given in Duflo (1997) to our framework.

5 Main results

In all the sequel, we will assume that the law of the immigration (ε2n, ε2n+1) does not
depend on n. However, we shall get rid of the standard assumption commonly used in the
INAR literature that the offspring sequences (Yn,i ) and (Zn,i ) share the same Bernoulli
distribution. The only assumption that we will use here is that the offspring sequences (Yn,i )

and (Zn,i ) admit eighth-order moments. We have to introduce some more notations in order
to state our main results. From the original process (Xn)n≥1, we shall define a new process
(Yn)n≥1 recursively given by Y1 = X1, and if Yn = Xk with n, k ≥ 1, then

Yn+1 = X2k+κn

where (κn)n≥1 is a sequence of i.i.d. random variables with Bernoulli B (1/2) distribution.
Such a construction may be found in Guyon (2007) for the asymptotic analysis of BAR
processes. The process (Yn) gathers the values of the original process (Xn) along the random
branch of the binary tree (Tn) given by (κn). Denote by kn the unique k ≥ 1 such that
Yn = Xk . Then, for all n ≥ 1, we have

Yn+1 = an+1 ◦ Yn + en+1 (5.1)

where

an+1 =
{

a if κn = 0

b otherwise
and en = εkn . (5.2)

Lemma 5.1 Assume that (εn) satisfies (H.1) to (H.4). Then, we have

Yn
L−→ T

where T is a positive non degenerate integer-valued random variable with E[T 3] < ∞.

Denote C1
3(R+) =

{
f ∈ C1(R+, R)

∣∣∃γ > 0,∀x ≥ 0, | f ′(x)| + | f (x)| ≤ γ (1 + x3)
}

.

Lemma 5.2 Assume that (εn) satisfies (H.1) to (H.5). Then, for all f ∈ C1
3(R+), we have

lim
n→∞

1

|Tn |
∑
k∈Tn

f (Xk) = E[ f (T )] a.s.
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Proposition 5.3 Assume that (εn) satisfies (H.1) to (H.5). Then, we have

lim
n→∞

〈M〉n

|Tn−1| = L a.s. (5.3)

where L is the positive definite matrix given by

L = E

[
1

(1 + T )2

(
σ 2

a T + σ 2
c ρ

ρ σ 2
b T + σ 2

d

)
⊗
(

T 2 T
T 1

)]
.

Our first result deals with the almost sure convergence of our WLS estimator θ̂n .

Theorem 5.4 Assume that (εn) satisfies (H.1) to (H.5). Then, θ̂n converges almost surely to
θ with the rate of convergence

‖θ̂n − θ‖2 = O
(

n

|Tn−1|
)

a.s. (5.4)

In addition, we also have the quadratic strong law

lim
n→∞

1

n

n∑
k=1

|Tk−1|(θ̂k − θ)t�(θ̂k − θ) = tr(�−1/2 L�−1/2) a.s. (5.5)

where

� = I2 ⊗ A and A = E

[
1

1 + T

(
T 2 T
T 1

)]
. (5.6)

Our second result concerns the almost sure asymptotic properties of our WLS variance and
covariance estimators η̂n , ζ̂n and ρ̂n . Let

ηn = Q−1
n−1

∑
k∈Tn−1

1

dk
V 2

2k�k,

ζn = Q−1
n−1

∑
k∈Tn−1

1

dk
V 2

2k+1�k,

ρn = 1

|Tn−1|
∑

k∈Tn−1

V2k V2k+1.

Theorem 5.5 Assume that (εn) satisfies (H.1) to (H.5). Then, η̂n and ζ̂n converge almost
surely to η and ζ respectively. More precisely,

‖η̂n − ηn‖ = O
(

n

|Tn−1|
)

a.s. (5.7)

‖̂ζn − ζn‖ = O
(

n

|Tn−1|
)

a.s. (5.8)

In addition, ρ̂n converges almost surely to ρ with

ρ̂n − ρn = O
(

n

|Tn−1|
)

a.s. (5.9)

Remark 5.6 We also have the almost sure rates of convergence

‖η̂n − η‖2 = O
(

n

|Tn−1|
)

, ‖̂ζn − ζ‖2 = O
(

n

|Tn−1|
)

, (ρ̂n − ρ)2 = O
(

n

|Tn−1|
)

a.s.
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Our last result is devoted to the asymptotic normality of our WLS estimators θ̂n , η̂n , ζ̂n and
ρ̂n .

Theorem 5.7 Assume that (εn) satisfies (H.1) to (H.5). Then, we have the asymptotic nor-
mality √|Tn−1|(θ̂n − θ)

L−→ N (0, (I2 ⊗ A−1)L(I2 ⊗ A−1)). (5.10)

In addition, we also have√|Tn−1| (̂ηn − η)
L−→ N (0, B−1 Mac B−1), (5.11)√|Tn−1|

(̂
ζn − ζ

) L−→ N (0, B−1 Mbd B−1), (5.12)

where

B = E

[
1

(1 + T )2

(
T 2 T
T 1

)]
,

Mac = E

[
2σ 4

a T 2 + (μ4
a − 3σ 4

a + 4σ 2
a σ 2

c )T + μ4
c − σ 4

c

(1 + T )4

(
T 2 T
T 1

)]
,

Mbd = E

[
2σ 4

b T 2 + (μ4
b − 3σ 4

b + 4σ 2
b σ 2

d )T + μ4
d − σ 4

d

(1 + T )4

(
T 2 T
T 1

)]
.

Finally, √|Tn−1| (ρ̂n − ρ)
L−→ N

(
0, σ 2

ρ

)
(5.13)

where

σ 2
ρ = σ 2

a σ 2
b E[T 2] + (

σ 2
a σ 2

d + σ 2
b σ 2

c

) c

1 − a
+ ν2 − ρ2,

E[T 2] = ϒc

1 − a
+ c2 − ϒc

1 − a2
+ 2(ac + bd)c

(1 − a)(1 − a2)
,

ϒ = σ 2
a + σ 2

b

2(a − a2)
, a = a + b

2
, a2 = a2 + b2

2
,

c = c + d

2
, c2 = σ 2

c + σ 2
d + c2 + d2

2
. (5.14)

The rest of the paper is dedicated to the proof of our main results.

6 Proof of Lemma 5.1

We can reformulate (5.1) and (5.2) as

Yn = an ◦ an−1 ◦ . . . ◦ a2 ◦ Y1 +
n−1∑
k=2

an ◦ an−1 ◦ . . . ◦ ak+1 ◦ ek + en .

We already made the assumption that the law of the immigration (ε2n, ε2n+1) does not depend
on n. Consequently, the couples (ak, ek) and (an−k+2, en−k+2) share the same distribution.
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Hence, for all n ≥ 2, Yn has the same distribution than the random variable

Zn = a2 ◦ . . . ◦ an ◦ Y1 +
n−1∑
k=2

a2 ◦ a3 ◦ . . . ◦ an−k+1 ◦ en−k+2 + e2,

= a2 ◦ . . . ◦ an ◦ Y1 +
n∑

k=3

a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek + e2.

For the sake of simplicity, we will denote

Zn = a2 ◦ . . . ◦ an ◦ Y1 +
n∑

k=2

a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek . (6.1)

For all n ≥ 2 and for all 2 ≤ k ≤ n, let 	n−k+2
n = ak ◦ . . . ◦ an ◦ Y1 and 	1

n = Y1. We
clearly have 	n−k+2

n = ak ◦ 	n−k+1
n . Consequently, it follows from the tower property of

the conditional expectation that

E[	n
n ] = E[a2 ◦ 	n−1

n ] = E[a ◦ 	n−1
n ]P(a2 = a) + E[b ◦ 	n−1

n ]P(a2 = b),

leading to

E[	n
n ] = 1

2

⎛
⎝E

⎡
⎣E

⎡
⎣	n−1

n∑
i=1

Y2,i

∣∣∣∣∣∣	n−1
n

⎤
⎦
⎤
⎦+ E

⎡
⎣E

⎡
⎣	n−1

n∑
i=1

Z2,i

∣∣∣∣∣∣	n−1
n

⎤
⎦
⎤
⎦
⎞
⎠ ,

= 1

2

⎛
⎝E

⎡
⎣	n−1

n∑
i=1

E
[
Y2,i

]⎤⎦+ E

⎡
⎣	n−1

n∑
i=1

E
[
Z2,i

]⎤⎦
⎞
⎠ ,

= 1

2

(
E[a	n−1

n ] + E[b	n−1
n ]) = aE[	n−1

n ] = · · · = an−1
E[	1

n ] = an−1
E[Y1].

The stability hypothesis 0 < max(a, b) < 1 implies that 0 < a < 1 which leads to

∞∑
n=2

E[	n
n ] = E[Y1]

∞∑
n=2

an−1 = E[Y1]a
1 − a

.

Then, we obtain from the monotone convergence theorem that

lim
n→∞ 	n

n = 0 a.s. (6.2)

It now remains to study the right-hand side sum in (6.1). For all n ≥ 2, denote

Tn =
n∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek .

By the same calculation as before, we have for all n ≥ 2

E[Tn] =
n∑

k=2

ak−2
E[ek] = c

n−2∑
k=0

ak,

which implies that

lim
n→∞ E[Tn] = c

1 − a
.
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Hence, the positive increasing sequence (Tn) converges almost surely to

T =
∞∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek

which is almost surely finite, thanks to the monotone convergence, as E[T ] < ∞. Therefore,
we can conclude from (6.1) and (6.2) that

lim
n→∞ Zn = T a.s.

leading to

Yn
L−→ T .

Let us prove that E[T 3] < ∞. First of all, we already saw that

E[a2 ◦ . . . ◦ an ◦ en+1] = an−1
E[e2] = an−1c.

In addition,

E[(	n
n )2] = 1

2

(
E
[
(a ◦ 	n−1

n )2]+ E
[
(b ◦ 	n−1

n )2]) ,
= 1

2

⎛
⎜⎝E

⎡
⎢⎣E

⎡
⎢⎣
⎛
⎝	n−1

n∑
i=1

Y2,i

⎞
⎠

2
∣∣∣∣∣∣∣	

n−1
n

⎤
⎥⎦
⎤
⎥⎦+ E

⎡
⎢⎣E

⎡
⎢⎣
⎛
⎝	n−1

n∑
i=1

Z2,i

⎞
⎠

2
∣∣∣∣∣∣∣	

n−1
n

⎤
⎥⎦
⎤
⎥⎦
⎞
⎟⎠ ,

and the first expectation is

E

⎡
⎢⎣E

⎡
⎢⎣
⎛
⎝	n−1

n∑
i=1

Y2,i

⎞
⎠

2
∣∣∣∣∣∣∣	

n−1
n

⎤
⎥⎦
⎤
⎥⎦ = E

⎡
⎢⎢⎣E

⎡
⎢⎢⎣

	n−1
n∑

i=1

Y 2
2,i +

	n−1
n∑

i=1

	n−1
n∑

j=1
j �=i

Y2,i Y2, j

∣∣∣∣∣∣∣∣
	n−1

n

⎤
⎥⎥⎦
⎤
⎥⎥⎦ ,

= E

⎡
⎢⎢⎣

	n−1
n∑

i=1

E[Y 2
2,i ] +

	n−1
n∑

i=1

	n−1
n∑

j=1
j �=i

E[Y2,i ]E[Y2, j ]

⎤
⎥⎥⎦ ,

= E[	n−1
n (σ 2

a + a2) + 	n−1
n (	n−1

n − 1)a2],
= E[	n−1

n ]σ 2
a + a2

E[(	n−1
n )2].

Since the computation of the second expectation is exactly the same, we obtain

E[(	n
n )2] = E[	n−1

n ]σ
2
a + σ 2

b

2
+ a2E[(	n−1

n )2],

= an−2 σ 2
a + σ 2

b

2
E[Y1] + a2E[(	n−1

n )2] = . . .

=
(

n−2∑
i=0

an−i−2a2
i
)

σ 2
a + σ 2

b

2
E[Y1] + a2

n−1
E[(	1

n)2],

= an−1 − a2
n−1

a − a2

σ 2
a + σ 2

b

2
E[Y1] + a2

n−1
E[Y 2

1 ],
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= (an−1 − a2
n−1

)ϒE[Y1] + a2
n−1

E[Y 2
1 ]

where

ϒ = σ 2
a + σ 2

b

2(a − a2)
.

In the same way, we can prove that

E[(a2 ◦ . . . ◦ an ◦ en+1)
2] = (an−1 − a2

n−1
)ϒc + a2

n−1
c2.

Consequently, as (en) is an integer-valued random variable,

E[(a2 ◦ . . . ◦ an ◦ en+1)
2] ≤ an−1(ϒc + c2) ≤ an−1(ϒ + 1)c2.

Furthermore, we obtain from tedious but straightforward calculations that it exists some
constant ξ > 0 such that for all 2 ≤ p ≤ 8

E[(a2 ◦ . . . ◦ an ◦ en+1)
p] ≤ ξE[ep

2 ]an−1. (6.3)

One can observe that the constant ξ only depends on the moments of (Yn,i ) and (Zn,i ) up to
order 8. Hence, as 0 < a < 1, we deduce from (6.3) and the triangle inequality that

E[T 3]1/3 ≤
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)

3]1/3
,

≤ ξ1/3
E[e3

2]1/3
∞∑

k=2

a(k−2)/3 < ∞

which immediately leads to E[T 3] < ∞. Finally, let us compute Var(T ) in order to prove
that T is not degenerate. First, one can observe that

E[T 2] = E

⎡
⎣( ∞∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek

)2
⎤
⎦ ,

=
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)

2]

+ 2
∞∑

k=2

∞∑
l=k+1

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)

]

We already saw that

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)

2] = (ak−2 − a2
k−2

)ϒc + a2
k−2

c2.
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Moreover, we have, for all l ≥ 3

E
[
e2(a2 ◦ . . . ◦ al−1 ◦ el)

] = 1

2
E
[
ε2(a ◦ . . . ◦ al−1 ◦ el)

]+ 1

2
E
[
ε3(b ◦ . . . ◦ al−1 ◦ el)

]
,

= 1

2

(
E [ε2] E[[(a ◦ . . . ◦ al−1 ◦ el)

]
+ E [ε3] E[[(b ◦ . . . ◦ al−1 ◦ el)

])
,

= 1

2

(
c(aal−3c) + d(bal−3c)

)
,

= (ac + bd)c

2
al−3.

In addition, for all k ≥ 2 and for all l ≥ k + 1

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)

]
= 1

2
E
[
(a ◦ . . . ◦ ak−1 ◦ ek) (a ◦ . . . ◦ al−1 ◦ el)

]
+1

2
E
[
(b ◦ . . . ◦ ak−1 ◦ ek) (b ◦ . . . ◦ al−1 ◦ el)

]
.

Let us tackle the first term

E
[
(a ◦ . . . ◦ ak−1 ◦ ek) (a ◦ . . . ◦ al−1 ◦ el)

]
= E

⎡
⎣(a3◦...◦ak−1◦ek∑

i=1

Yk,i

)⎛⎝a3◦...◦al−1◦el∑
j=1

Yl, j

⎞
⎠
⎤
⎦ ,

= E

⎡
⎣a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑
j=1

E[Yk,i Yl, j |a3 ◦ . . . ◦ ak−1 ◦ ek, a3 ◦ . . . ◦ al−1 ◦ el ]
⎤
⎦ ,

= E

⎡
⎣a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑
j=1

E[Yk,i Yl, j ]
⎤
⎦ ,

= E

⎡
⎣a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑
j=1

a2

⎤
⎦ ,

= a2
E
[
(a3 ◦ . . . ◦ ak−1 ◦ ek) (a3 ◦ . . . ◦ al−1 ◦ el)

]
.

Hence, we obtained that

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)

]
= a2E

[
(a3 ◦ . . . ◦ ak−1 ◦ ek) (a3 ◦ . . . ◦ al−1 ◦ el)

]
,

= a2
k−2

E
[
ek (ak ◦ . . . ◦ al−1 ◦ el)

]
,

= a2
k−2 (ac + bd)c

2
al−k−1.
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Finally, we have

E[T 2] =
∞∑

k=2

(
(ak−2 − a2

k−2
)ϒc + a2

k−2
c2
)

+ 2
∞∑

l=3

(ac + bd)c

2
al−3

+ 2
∞∑

k=3

∞∑
l=k+1

a2
k−2 (ac + bd)c

2
al−k−1,

= ϒc

(
1

1 − a
− 1

1 − a2

)
+ c2

1 − a2
+ (ac + bd)c

1 − a

(
1 + a2

1 − a2

)
,

= ϒc

(
1

1 − a
− 1

1 − a2

)
+ c2

1 − a2
+ (ac + bd)c

(1 − a)(1 − a2)
.

To conclude, we can compute the variance of T

Var(T ) = E[T 2] − E[T ]2,

= ϒc

(
1

1 − a
− 1

1 − a2

)
+ σ 2

c + σ 2
d

2(1 − a2)

+ c2 + d2

2(1 − a2)
+ (ac + bd)c

(1 − a)(1 − a2)
−
(

c

1 − a

)2

,

= ϒc

(
1

1 − a
− 1

1 − a2

)
+ σ 2

c + σ 2
d

2(1 − a2)
+ 2(ad − bc + c − d)2

(2 − (a2 + b2))(2 − (a + b))2 .

The first and the third terms of this sum are clearly nonnegative since max(a, b) < 1, and
the second term is clearly positive under (H.2). This allows us to say that the variance of T 2

is positive and T is not degenerate.

7 Proof of Lemma 5.2

We shall now prove that for all f ∈ C1
3(R+),

lim
n→∞

1

|Tn |
∑
k∈Tn

f (Xk) = E[ f (T )]. (7.1)

Denote g = f − E[ f (T )],

MTn ( f ) = 1

|Tn |
∑
k∈Tn

f (Xk) and MGn ( f ) = 1

|Gn |
∑

k∈Gn

f (Xk).

Via Lemma A.2 of Bercu et al. (2009), it is only necessary to prove that

lim
n→∞

1

|Gn |
∑

k∈Gn

g(Xk) = 0 a.s.

We shall follow the induced Markov chain approach, originally proposed by in Guyon (2007).
Let Q be the transition probability of (Yn), Q p the p-th iterated of Q. In addition, denote
by ν the distribution of Y1 = X1 and νQ p the law of Yp . Finally, let P be the transition
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probability of (Xn) as defined in Guyon (2007). We obtain from relation (7) of Guyon (2007)
that for all n ≥ 0

E[MGn (g)2] = 1

2n
νQng2 +

n−1∑
k=0

1

2k+1 νQk P(Qn−k−1g � Qn−k−1g)

where, for all x, y ∈ N, ( f � g)(x, y) = f (x)g(y). Consequently,

∞∑
n=0

E[MGn (g)2] =
∞∑

n=0

1

2n
νQng2 +

∞∑
n=1

n−1∑
k=0

1

2k+1 νQk P(Qn−k−1g � Qn−k−1g),

≤
∞∑

k=0

1

2k
νQk

(
g2 + P

( ∞∑
l=0

|Ql g � Ql g|
))

.

However, for all x ∈ N,

Qng(x) = Qn f (x) − E[ f (T )] = Ex [ f (Yn) − f (T )] = Ex [ f (Zn) − f (T )]
where Zn is given by (6.1). Hence, we deduce from the mean value theorem and Cauchy–
Schwarz inequality that

|Qng(x)| ≤ Ex [Wn |Zn − T |] ≤ Ex [W 2
n ]1/2

Ex [(Zn − T )2]1/2 (7.2)

where

Wn = sup
z∈[Zn ,T ]

| f ′(z)|.

By the very definition of C1
3(R+), one can find some constant α > 0 such that | f ′(z)| ≤

α(1 + z6). Hence, it exists some constant β > 0 such that

Ex [W 2
n ] ≤ αEx [1 + Z6

n + T 6] = α(1 + Ex [Z6
n] + E[T 6]),

≤ β(1 + x6). (7.3)

As a matter of fact, under hypotheses (H.1) to (H.5), E[T 6] < ∞ and it exists some constant
γ > 0 such that Ex [Z6

n] < γ (1 + x6). Let us first deal with E[T 6]. The triangle inequality,
together with 0 < a < 1 and (6.3) allow us to say that

E[T 6]1/6 ≤
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)

6]1/6 ≤ ξ1/6
E[e6

2]1/6
∞∑

k=2

a(k−2)/6 < ∞

which immediately leads to E[T 6] < ∞. One the other hand, we infer from (6.1) that

Ex [Z6
n]1/6 ≤ Ex [(a2 ◦ . . . ◦ an ◦ Y1)

6]1/6 +
n∑

k=2

Ex
[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)

6]1/6
,

≤ ξ1/6
Ex [Y 6

1 ]1/6an−1 +
∞∑

k=2

E
[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)

6]1/6
,

≤ ξ1/6x +
∞∑

k=2

E
[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)

6]1/6
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and we have already proved that the sum in the right-hand term is finite. So we can conclude
that there exists some constant γ > 0 such that Ex [Z6

n] < γ (1 + x6). Furthermore

Zn − T = a2 ◦ . . . an ◦ Y1 −
∞∑

k=n+1

a2 ◦ . . . ◦ ak ◦ ek+1

and the triangle inequality allows us to say that

Ex [(Zn − T )2]1/2 ≤ Ex [(a2 ◦ . . . an ◦ Y1)
2]1/2 +

∞∑
k=n+1

Ex [(a2 ◦ . . . ◦ ak ◦ ek+1)
2]1/2.

We already saw in Sect. 6 that

Ex [(a2 ◦ . . . an ◦ Y1)
2] = (an−1 − a2

n−1
)ϒEx [Y1] + a2

n−1
Ex [Y 2

1 ],
= (an−1 − a2

n−1
)ϒx + a2

n−1
x2 = x(ϒan−1 + a2

n−1
(x − ϒ))

and

Ex [(a2 ◦ . . . ◦ ak ◦ ek+1)
2] = (ak−1 − a2

k−1
)ϒc + a2

k−1
c2.

Hence

∞∑
k=n+1

Ex [(a2 ◦ . . . ◦ ak ◦ ek+1)
2]1/2 =

∞∑
k=n+1

(
ak−1ϒc + a2

k−1 (
c2 − ϒc

))1/2
,

≤
∞∑

k=n+1

(
ak−1c + ak−1

∣∣∣c2 − ϒc
∣∣∣)1/2

,

≤
∞∑

k=n+1

√
a

k−1
δ = δ

√
a

n

1 − √
a

.

where

δ =
√

max(c2, (1 + ϒ)c − c2).

To sum up, we find that

Ex [(Zn − T )2]1/2 ≤ √
x
(
ϒan−1 + a2

n−1
(x − ϒ)

)1/2
+ δ

1 − √
a

√
a

n
,

≤

⎧⎪⎨
⎪⎩

√
x
(
ϒan−1 + an−1(x − ϒ)

)1/2 + δ

1 − √
a

√
a

n
if x > ϒ,

√
x
√

ϒ
√

a
n−1 + δ

1 − √
a

√
a

n
if x ≤ ϒ,

≤

⎧⎪⎨
⎪⎩

x
√

a
n−1 + δ

1 − √
a

√
a

n
if x > ϒ,

1 + x

2

√
ϒ

√
a

n−1 + δ

1 − √
a

√
a

n
if x ≤ ϒ,

≤ √
a

n
(1 + x)

(√
ϒ

2
√

a
+ δ

1 − √
a

)
. (7.4)
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Finally, we obtain from (7.2) together with (7.3) and (7.4) that for some constant κ > 0

|Qng(x)| ≤ √
β(1 + x6)1/2

√
a

n−1
(1 + x)

(√
ϒ

2
+ δ

1 − √
a

)
≤ √

a
n
κ(1 + x4).

Therefore,

P

( ∞∑
n=0

|Qng � Qng|
)

≤ κ2

1 − a
P(h � h)

where, for all x ∈ N, h(x) = 1 + x4. We are now in position to prove that

E

[ ∞∑
n=0

MGn (g)2

]
< ∞. (7.5)

It is not hard to see that from hypothesis (H.5), it exists some constant λ > 0 such that for
all x ∈ N, P(h � h)(x) ≤ λ(1 + x8). Consequently, it exists some constant μ > 0 such that

∞∑
n=0

E
[
MGn (g)2] ≤

∞∑
k=0

1

2k
νQk

(
g2 + P

( ∞∑
l=0

|Ql g � Ql g|
))

,

≤
∞∑

k=0

1

2k

(
E[g2(Yk)] + λκ2

1 − a
(1 + E[Y 8

k ])
)

,

≤
(

2μ + λκ2

1 − a

)(
2 +

∞∑
k=0

1

2k
E[Y 8

k ]
)

. (7.6)

Furthermore, we can deduce from (6.3) that it exists some constant ζ such that

E[Y 8
n ]1/8 ≤ E

[
(a2 ◦ . . . an ◦ Y1)

8]1/8 +
n∑

k=2

E
[
(a2 ◦ . . . ak−1 ◦ ek)

8]1/8
,

≤ E
[
(a2 ◦ . . . an ◦ Y1)

8]1/8 + ξ1/8
E[e8

2]1/8
n∑

k=2

ak−2,

≤ ζ 1/8
E[Y 8

1 ]1/8an−1 + ξ1/8
E[e8

2]1/8

1 − a
,

≤ ζ 1/8
E[Y 8

1 ]1/8 + ξ1/8
E[e8

2]1/8

1 − a
. (7.7)

Then, (7.6) and (7.7) immediately lead to (7.5). Finally, the monotone convergence theorem
implies that

lim
n→∞ MGn (g) = 0 a.s.

which completes the proof of Lemma 5.2.

8 Proof of Proposition 5.3

The almost sure convergence (5.3) immediately follows from (4.2) and (4.3) together with
Lemma 5.2. It only remains to prove that det(L) > 0 where the limiting matrix L can be
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rewritten as

L = E [� ⊗ B]

where

� =
(

σ 2
a T + σ 2

c ρ

ρ σ 2
b T + σ 2

d

)
and B =

⎛
⎜⎜⎝

T 2

(1 + T )2

T

(1 + T )2

T

(1 + T )2

1

(1 + T )2

⎞
⎟⎟⎠ .

We have

L = E

[(
σ 2

a T 0
0 σ 2

b T

)
⊗ B

]
+ E

[(
σ 2

c ρ

ρ σ 2
d

)
⊗ B

]
,

=
(

σ 2
a 0
0 σ 2

b

)
⊗ E[T B] +

(
σ 2

c ρ

ρ σ 2
d

)
⊗ E[B]. (8.1)

We shall prove that E[B] is a positive definite matrix and that E[T B] is a positive semidefinite
matrix. Denote by λ1 and λ2 the two eigenvalues of the real symmetric matrix E[B]. We clearly
have

λ1 + λ2 = tr(E[B]) = E

[
T 2 + 1

(1 + T )2

]
> 0

and

λ1λ2 = det(E[B]) = E

[
T 2

(1 + T )2

]
E

[
1

(1 + T )2

]
− E

[
T

(1 + T )2

]2

≥ 0

thanks to the Cauchy–Schwarz inequality and λ1λ2 = 0 if and only if T is degenerate, which
is not the case thanks to Lemma 5.1. Consequently, E[B] is a positive definite matrix. In the
same way, we can prove that E[T B] is a positive semidefinite matrix. Since the Kronecker
product of two positive semidefinite (respectively positive definite) matrices is a positive
semidefinite (respectively positive definite) matrix, we deduce from (8.1) that L is positive
definite as soon as ρ2 < σ 2

c σ 2
d which is the case thanks to (H.3).

9 Proof of Theorem 5.4

We will follow the same approach as in Bercu et al. (2009). For all n ≥ 1, let Vn =
Mt

n	−1
n−1 Mn = (θ̂n − θ)t	n−1(θ̂n − θ). First of all, we have

Vn+1 = Mt
n+1	

−1
n Mn+1 = (Mn + �Mn+1)

t	−1
n (Mn + �Mn+1),

= Mt
n	−1

n Mn + 2Mt
n	−1

n �Mn+1 + �Mt
n+1	

−1
n �Mn+1,

= Vn − Mt
n(	−1

n−1 − 	−1
n )Mn + 2Mt

n	−1
n �Mn+1 + �Mt

n+1	
−1
n �Mn+1.

By summing over this identity, we obtain the main decomposition

Vn+1 + An = V1 + Bn+1 + Wn+1 (9.1)
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where

An =
n∑

k=1

Mt
k(	

−1
k−1 − 	−1

k )Mk,

Bn+1 = 2
n∑

k=1

Mt
k	

−1
k �Mk+1 and Wn+1 =

n∑
k=1

�Mt
k+1	

−1
k �Mk+1.

Lemma 9.1 Assume that (εn) satisfies (H.1) to (H.5). Then, we have

lim
n→∞

Wn

n
= 1

2
tr((I2 ⊗ A)−1/2 L(I2 ⊗ A)−1/2) a.s. (9.2)

where A is the positive definite matrix given by (5.6). In addition, we also have

Bn+1 = o(n) a.s. (9.3)

and

lim
n→∞

Vn+1 + An

n
= 1

2
tr((I2 ⊗ A)−1/2 L(I2 ⊗ A)−1/2) a.s. (9.4)

Proof First of all, we have Wn+1 = Tn+1 + Rn+1 where

Tn+1 =
n∑

k=1

�Mt
k+1(I2 ⊗ A)−1�Mk+1

|Tk | ,

Rn+1 =
n∑

k=1

�Mt
k+1(|Tk |	−1

k − (I2 ⊗ A)−1)�Mk+1

|Tk | .

One can observe that Tn+1 = tr((I2 ⊗ A)−1/2Hn+1(I2 ⊗ A)−1/2) where

Hn+1 =
n∑

k=1

�Mk+1�Mt
k+1

|Tk | .

Our aim is to make use of the strong law of large numbers for martingale transforms, so
we start by adding and subtracting a term involving the conditional expectation of �Hn+1

given Fn . We have thanks to relation (4.3) that for all n ≥ 0, E[�Mn+1�Mt
n+1|Fn] = Ln .

Consequently, we can split Hn+1 into two terms

Hn+1 =
n∑

k=1

Lk

|Tk | + Kn+1,

where

Kn+1 =
n∑

k=1

�Mk+1�Mt
k+1 − Lk

|Tk | .

It clearly follows from convergence (5.3) that

lim
n→∞

Ln

|Tn | = 1

2
L a.s.

Hence, Cesaro convergence immediately implies that

lim
n→∞

1

n

n∑
k=1

Lk

|Tk | = 1

2
L a.s. (9.5)
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On the other hand, the sequence (Kn)n≥2 is obviously a square integrable martingale. More-
over, we have

�Kn+1 = Kn+1 − Kn = 1

|Tn | (�Mn+1�Mt
n+1 − Ln).

For all u ∈ R
4, denote Kn(u) = utKnu. It follows from tedious but straightforward calcu-

lations, together with Lemma 5.2, that the increasing process of the martingale (Kn(u))n≥2

satisfies 〈K(u)〉n = O(n) a.s. Therefore, we deduce from the strong law of large numbers
for martingales that for all u ∈ R

4, Kn(u) = o(n) a.s. leading to Kn = o(n) a.s. Hence, we
infer from (9.5) that

lim
n→∞

Hn+1

n
= 1

2
L a.s. (9.6)

Via the same arguments as in the proof of convergence (5.3), we find that

lim
n→∞

	n

|Tn | = I2 ⊗ A a.s. (9.7)

where A is the positive definite matrix given by (5.6). Then, we obtain from (9.6) that

lim
n→∞

Tn

n
= 1

2
tr((I2 ⊗ A)−1/2 L(I2 ⊗ A)−1/2) a.s.

which allows us to say that Rn = o(n) a.s. leading to (9.2) We are now in position to prove
(9.3). Let us recall that

Bn+1 = 2
n∑

k=1

Mt
k	

−1
k �Mk+1 = 2

n∑
k=1

Mt
k	

−1
k �kξk+1.

Hence, (Bn)n≥2 is a square integrable martingale. In addition, we have

�Bn+1 = 2Mt
n	−1

n �Mn+1.

Thus

E[(�Bn+1)
2|Fn] = 4E[Mt

n	−1
n �Mn+1�Mt

n+1	
−1
n Mn |Fn] a.s.

= 4Mt
n	−1

n E[�Mn+1�Mt
n+1|Fn]	−1

n Mn a.s.

= 4Mt
n	−1

n Ln	−1
n Mn a.s.

We can observe that

Ln =
∑

k∈Gn

1

c2
k

(
σ 2

a Xk + σ 2
c ρ

ρ σ 2
b Xk + σ 2

d

)
⊗
(

X2
k Xk

Xk 1

)

and

�n� t
n =

∑
k∈Gn

1

ck
I2 ⊗

(
X2

k Xk

Xk 1

)
.

For α = max(σ 2
a + σ 2

b , σ 2
c + σ 2

d ), denote

�n = αcn I2 −
(

σ 2
a Xn + σ 2

c ρ

ρ σ 2
b Xn + σ 2

d

)
.

It is not hard to see that �n is a positive definite matrix. As a matter of fact, we deduce from
the elementary inequality

(σ 2
a + σ 2

b )Xn + σ 2
c + σ 2

d ≤ αcn (9.8)
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that

tr(�n) = 2αcn − (
(σ 2

a + σ 2
b )Xn + σ 2

c + σ 2
d

) ≥ αcn > 0.

In addition, we also have from (9.8) that

det(�n) = (
αcn − (σ 2

a Xn + σ 2
c )
) (

αcn − (σ 2
b Xn + σ 2

d )
)− ρ2,

= α2c2
n − αcn

(
(σ 2

a + σ 2
b )Xn + σ 2

c + σ 2
d

)
+ (σ 2

a Xn + σ 2
c )(σ 2

b Xn + σ 2
d ) − ρ2,

≥ σ 2
a σ 2

b X2
n + (σ 2

a σ 2
d + σ 2

b σ 2
c )Xn + σ 2

c σ 2
d − ρ2,

≥ σ 2
c σ 2

d − ρ2 > 0

thanks to (H.3). Consequently,(
σ 2

a Xn + σ 2
c ρ

ρ σ 2
b Xn + σ 2

d

)
≤ αcn I2

which immediately implies that Ln ≤ α�n� t
n . Moreover, we can use Lemma B.1 of Bercu

et al. (2009) to say that

	−1
n �n� t

n	−1
n ≤ 	−1

n−1 − 	−1
n .

Hence

E[(�Bn+1)
2|Fn] = 4Mt

n	−1
n Ln	−1

n Mn a.s.

≤ 4αMt
n	−1

n �n� t
n	−1

n Mn a.s.

≤ 4αMt
n(	−1

n−1 − 	−1
n )Mn a.s.

leading to 〈B〉n ≤ 4αAn . Therefore it follows from the strong law of large numbers for
martingales that Bn = o(An). Finally, we deduce from decomposition (9.1) that

Vn+1 + An = o(An) + O(n) a.s.

leading to Vn+1 = O(n) and An = O(n) a.s. which implies that Bn = o(n) a.s. Finally we
clearly obtain convergence (9.4) from the main decomposition (9.1) together with (9.2) and
(9.3), which completes the proof of Lemma 9.1. ��
Lemma 9.2 Assume that (εn) satisfies (H.1) to (H.5). For all δ > 1/2, we have

‖Mn‖2 = o(|Tn |nδ) a.s. (9.9)

Proof Let us recall that

Mn =
∑

k∈Tn−1

1

ck

⎛
⎜⎜⎝

Xk V2k

V2k

Xk V2k+1

V2k+1

⎞
⎟⎟⎠ .

Denote

Pn =
∑

k∈Tn−1

Xk V2k

ck
and Qn =

∑
i∈Tn−1

V2k

ck
.
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On the one hand, Pn can be rewritten as

Pn =
n∑

k=1

√|Gk−1| fk where fn = 1√|Gn−1|
∑

k∈Gn−1

Xk V2k

ck
.

We already saw in Sect. 3 that for all k ∈ Gn ,

E[V2k |Fn] = 0 and E[V 2
2k |Fn] = σ 2

a Xk + σ 2
c a.s.

In addition, for all k ∈ Gn ,

E[V 4
2k |Fn] = 3σ 4

a X2
k + Xk(μ

4
a − 3σ 4

a + 6σ 2
a σ 2

c ) + μ4
c a.s.

which implies that
E[V 4

2k |Fn] ≤ μ4
acc2

k a.s. (9.10)

where μ4
ac = μ4

a + μ4
c + 6σ 2

a σ 2
c . Consequently, E[ fn+1|Fn] = 0 a.s. and we deduce from

(9.10) together with the Cauchy–Schwarz inequality that

E[ f 4
n+1|Fn] = 1

|Gn |2
∑

k∈Gn

(
Xk

ck

)4

E[V 4
2k |Fn]

+ 3

|Gn |2
∑

k∈Gn

∑
l∈Gn
l �=k

(
Xk

ck

)2 ( Xl

cl

)2

E[V 2
2k |Fn]E[V 2

2l |Fn] a.s.

≤ μ4
ac

|Gn |2 (1 + 3
√|Gn |(|Gn | − 1))

∑
k∈Gn

c2
k a.s.

≤ 3μ4
ac

|Gn |
∑

k∈Gn

c2
k a.s. (9.11)

However, it follows from Lemma 5.2 that

lim
n→∞

1

|Tn |
∑
k∈Tn

c2
k = E[(1 + T )2] a.s.

which is equivalent to say that

lim
n→∞

1

|Gn |
∑

k∈Gn

c2
k = E[(1 + T )2] a.s. (9.12)

Therefore, we infer from (9.11) and (9.12) that

sup
n≥0

E[ f 4
n+1|Fn] < ∞ a.s.

Hence, we obtain from Wei’s Lemma given in Wei (1987) page 1672 that for all δ > 1/2,

P2
n = o(|Tn−1|nδ) a.s.

On the other hand, Qn can be rewritten as

Qn =
n∑

k=1

√|Gk−1|gk where gn = 1√|Gn−1|
∑

k∈Gn−1

V2k

ck
.
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Via the same calculation as before, E[gn+1|Fn] = 0 a.s. and, as cn ≥ 1,

E[g4
n+1|Fn] ≤ 3μ4

bd

|Gn |
∑

k∈Gn

1

c2
k

≤ 3μ4
bd a.s.

Hence, we deduce once again from Wei’s Lemma that for all δ > 1/2,

Q2
n = o(|Tn−1|nδ) a.s.

In the same way, we obtain the same result for the two last components of Mn , which
completes the proof of Lemma 9.2. ��

Proof of Theorem 5.4 We recall from (4.1) that θ̂n − θ = 	−1
n−1 Mn which implies

‖θ̂n − θ‖2 ≤ Vn

λmin(	n−1)

where Vn = Mt
n	−1

n−1 Mn . On the one hand, it follows from (9.4) that Vn = O(n) a.s. On the
other hand, we deduce from (9.7) that

lim
n→∞

λmin(	n)

|Tn | = λmin(A) > 0 a.s.

Consequently, we find that

‖θ̂n − θ‖2 = O
(

n

|Tn−1|
)

a.s.

We are now in position to prove the quadratic strong law (5.5). First of all a direct application
of Lemma 9.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, we obtain from (9.4) that

lim
n→∞

An

n
= 1

2
tr((I2 ⊗ A)−1/2 L(I2 ⊗ A)−1/2) a.s. (9.13)

Let us rewrite An as

An =
n∑

k=1

Mt
k

(
	−1

k−1 − 	−1
k

)
Mk =

n∑
k=1

Mt
k	

−1/2
k−1 �k	

−1/2
k−1 Mk

where �k = I4 − 	
1/2
k−1	

−1
k 	

1/2
k−1. We already saw from (9.7) that

lim
n→∞

	n

|Tn | = I2 ⊗ A a.s.

which ensures that

lim
n→∞ �n = 1

2
I4 a.s.

In addition, we deduce from (9.4) that An = O(n) a.s. which implies that

An

n
=
(

1

2n

n∑
k=1

Mt
k	

−1
k−1 Mk

)
+ o(1) a.s. (9.14)
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Moreover we have

1

n

n∑
k=1

Mt
k	

−1
k−1 Mk = 1

n

n∑
k=1

(θ̂k − θ)t	k−1(θ̂k − θ),

= 1

n

n∑
k=1

|Tk−1|(θ̂k − θ)t 	k−1

|Tk−1| (θ̂k − θ),

= 1

n

n∑
k=1

|Tk−1|(θ̂k − θ)t (I2 ⊗ A)(θ̂k − θ) + o(1) a.s. (9.15)

Therefore, (9.13) together with (9.14) and (9.15) lead to (5.5). ��

10 Proof of Theorem 5.5

First of all, we shall only prove (5.7) since the proof of (5.8) follows exactly the same lines.
We clearly have from (3.7) that

Qn−1(̂ηn − ηn) =
∑

k∈Tn−1

1

dk
(V̂ 2

2k − V 2
2k)�k,

=
n−1∑
l=0

∑
k∈Gl

1

dk
(V̂ 2

2k − V 2
2k)�k,

=
n−1∑
l=0

∑
k∈Gl

1

dk

(
(V̂2k − V2k)

2 + 2(V̂2k − V2k)V2k
)
�k . (10.1)

In addition, we already saw in Sect. 3 that for all l ≥ 0 and k ∈ Gl ,

V̂2k − V2k = −
(

âl − a
ĉl − c

)t

�k .

Consequently,

(V̂2k − V2k)
2 ≤ ‖�k‖2 ((̂al − a)2 + (̂cl − c)2) .

Hence, we obtain that∥∥∥∥∥∥
n−1∑
l=0

∑
k∈Gl

(V̂2k − V2k)
2

dk
�k

∥∥∥∥∥∥ ≤
n−1∑
l=0

∑
k∈Gl

‖�k‖3

dk

(
(̂al − a)2 + (̂cl − c)2) ,

≤
n−1∑
l=0

(
(̂al − a)2 + (̂cl − c)2) ∑

k∈Gl

ck,

≤
n−1∑
l=0

(
(̂al − a)2 + (̂cl − c)2) |Tl−1| 1

|Tl−1|
∑
k∈Gl

ck . (10.2)

Moreover, we can deduce from Lemma 5.2 that

lim
n→∞

1

|Tn−1|
∑

k∈Gn

ck = E[1 + T ] a.s. (10.3)
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Then, we find from (10.2) and (10.3) that

∥∥∥∥∥∥
n−1∑
l=0

∑
k∈Gl

(V̂2k − V2k)
2

dk
�k

∥∥∥∥∥∥ = O
(

n−1∑
l=0

|Tl−1|
(
(̂al − a)2 + (̂cl − c)2)) a.s.

However, as � is positive definite, we obtain from (5.5) that

n−1∑
l=0

|Tl−1|
(
(̂al − a)2 + (̂cl − c)2) = O(n) a.s.

which implies that ∥∥∥∥∥∥
n−1∑
l=0

∑
k∈Gl

(V̂2k − V2k)
2

dk
�k

∥∥∥∥∥∥ = O(n) a.s. (10.4)

Furthermore, denote

Pn =
n−1∑
l=0

∑
k∈Gl

(V̂2k − V2k)V2k

dk
�k .

We clearly have

�Pn+1 = Pn+1 − Pn =
∑

k∈Gn

(V̂2k − V2k)V2k

dk
�k,

= −
∑

k∈Gn

V2k

dk
�k�

t
k

(
âl − a
ĉl − c

)
.

In addition, for all k ∈ Gn , E[V2k |Fn] = 0 a.s. and E[V 2
2k |Fn] = σ 2

a Xk +σ 2
c ≤ αck a.s. where

α = max(σ 2
a , σ 2

c ). Consequently, E[�Pn+1|Fn] = 0 a.s. and

E[�Pn+1�Pt
n+1|Fn] =

∑
k∈Gn

1

d2
k

E[V 2
2k |Fn]�k�

t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

�k�
t
k a.s.

=
∑

k∈Gn

σ 2
a Xk + σ 2

c

d2
k

�k�
t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

�k�
t
k a.s.

Therefore, (Pn) is a square integrable vector martingale with increasing process 〈P〉n given
by

〈P〉n =
n−1∑
l=1

E[�Pl+1�Pt
l+1|Fl ] a.s.

=
n−1∑
l=1

∑
k∈Gl

σ 2
a Xk + σ 2

c

d2
k

�k�
t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

�k�
t
k a.s.
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It immediately follows from the previous calculation that

‖〈P〉n‖ ≤ α

n−1∑
l=0

(
(̂al − a)2 + (̂cl − c)2) ∑

k∈Gl

‖�k‖4ck

d2
k

a.s.

≤ α

n−1∑
l=0

(
(̂al − a)2 + (̂cl − c)2) ∑

k∈Gl

ck a.s.

leading to

‖〈P〉n‖ = O(n) a.s.

Then, we deduce from the strong law of large numbers for martingale given e.g. in Theorem
1.3.15 of Duflo (1997) that

‖Pn‖ = o(n) a.s. (10.5)

Hence, we find from (10.1), (10.4) and (10.5) that

‖Qn−1(̂ηn − ηn)‖ = O(n) a.s.

Moreover, we infer once again from Lemma 5.2 that

lim
n→∞

1

|Tn | Qn = E

[(
T 2

(1+T )2
T

(1+T )2

T
(1+T )2

1
(1+T )2

)]
a.s. (10.6)

which ensures that

‖η̂n − ηn‖ = O
(

n

|Tn−1|
)

a.s.

It remains to establish (5.9). Denote

Ŵn =
(

V̂2n

V̂2n+1

)
and Rn =

∑
k∈Tn−1

(
Ŵk − Wk

)t
J Wk

where

J =
(

0 1
1 0

)
.

Then, we have

|Tn−1|(ρ̂n − ρn) =
∑

k∈Tn−1

(
V̂2k − V2k

) (
V̂2k+1 − V2k+1

)+ Rn .

It is not hard to see that (Rn) is a square integrable real martingale with increasing process
given by

〈R〉n =
n−1∑
l=0

∑
k∈Gl

E
[
(Ŵk − Wk)

t J Wk W t
k J (Ŵk − Wk)

∣∣Fn
]

a.s.

=
n−1∑
l=0

∑
k∈Gl

(Ŵk − Wk)
t JE

[
Wk W t

k

∣∣Fn
]

J (Ŵk − Wk) a.s.
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=
n−1∑
l=0

∑
k∈Gl

(Ŵk − Wk)
t J

(
σ 2

a Xk + σ 2
c ρ

ρ σ 2
b Xk + σ 2

d

)
J (Ŵk − Wk) a.s.

=
n−1∑
l=0

∑
k∈Gl

(Ŵk − Wk)
t
(

σ 2
b Xk + σ 2

d ρ

ρ σ 2
a Xk + σ 2

c

)
(Ŵk − Wk) a.s.

Consequently,

〈R〉n ≤
n−1∑
l=0

∑
k∈Gl

(
(σ 2

a + σ 2
b )Xk + σ 2

c + σ 2
d

) ‖Ŵk − Wk‖2 a.s.

≤ 2β

n−1∑
l=0

(
(̂al − a)2 + (̂bl − b)2) ∑

k∈Gl

X2
k ck

+ 2β

n−1∑
l=0

(
(̂cl − c)2 + (d̂l − d)2) ∑

k∈Gl

ck a.s.

where β = max(σ 2
a + σ 2

b , σ 2
c + σ 2

d ). As previously, we obtain through Lemma 5.2 together
with (5.5) that 〈R〉n = O(n) a.s. which ensures that Rn = o(n) a.s. Moreover,∣∣∣∣∣∣
∑

k∈Tn−1

(
V̂2k − V2k

) (
V̂2k+1 − V2k+1

)∣∣∣∣∣∣ ≤ 1

2

∑
k∈Tn−1

((
V̂2k − V2k

)2 + (
V̂2k+1 − V2k+1

)2)
,

≤ 1

2

n−1∑
l=0

‖θ̂l − θ‖2
∑
k∈Gl

(1 + X2
k )

which implies via Lemma 5.2 and (5.5) that∑
k∈Tn−1

(
V̂2k − V2k

) (
V̂2k+1 − V2k+1

) = O(n) a.s.

Therefore, we obtain that

|Tn−1|(ρ̂n − ρn) = O(n) a.s.

which leads to (5.9). Finally, it only remains to prove the a.s. convergence of ηn , ζn and ρn

to η, ζ and ρ which will immediately lead to the a.s. convergence of η̂n , ζ̂n and ρ̂n through
(5.7), (5.8) and (5.9), respectively. On the one hand,

Qn−1(ηn − η) = Nn =
∑
k∈Tn

1

dk
�kv2k (10.7)

where we recall that v2n = V 2
2n − ηt�n . It is clear that (Nn) is a square integrable vector

martingale with increasing process 〈N 〉n given by

〈N 〉n =
n−1∑
l=0

∑
k∈Gl

1

d2
k

�k�
t
k(2σ 4

a X2
k + (μ4

a − 3σ 4
a + 4σ 2

a σ 2
c )Xk + μ4

c − σ 4
c ) a.s.
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Hence,

〈N 〉n ≤ γ

n−1∑
l=0

∑
k∈Gl

1

dk
�k�

t
k a.s.

where γ = μ4
a − σ 4

a + 4σ 2
a σ 2

c + μ4
c − σ 4

c , which implies that

‖〈N 〉n‖ = O(|Tn−1|) a.s.

Consequently,

‖Nn‖2 = O(n|Tn−1|) a.s.

which leads via (10.6) and (10.7) to the a.s. convergence of ηn to η and to the rate of
convergence of Remark 5.6. The proof of the a.s. convergence of ζn to ζ follows exactly the
same lines. On the other hand

|Tn−1|(ρn − ρ) = Hn =
∑

k∈Tn−1

(V2k V2k+1 − ρ) (10.8)

It is obvious to see that (Hn) is a square integrable real martingale with increasing process
〈H〉n such that 〈H〉n = O(|Tn−1|) a.s. Finally, as H2

n = O(n|Tn−1|) a.s., we deduce from
(10.8) that ρn goes a.s. to ρ and that the rate of convergence of Remark 5.6 is verified, which
completes the proof of Theorem 5.5.

11 Proof of Theorem 5.7

In order to establish the asymptotic normality of our estimators, we will extensively make use
of the central limit theorem for triangular arrays of vector martingales given e.g. by Theorem
2.1.9 of Duflo (1997). First of all, instead of using the generation-wise filtration (Fn), we
will use the sister pair-wise filtration (Gn) given by

Gn = σ(X1, (X2k, X2k+1), 1 ≤ k ≤ n).

Proof of Theorem 5.7, first part We focus our attention to the proof of the asymptotic nor-
mality (5.10). Let M (n) = (M (n)

k ) be the square integrable vector martingale defined as

M (n)
k = 1√|Tn |

k∑
i=1

Di (11.1)

where

Di = 1

ci

⎛
⎜⎜⎝

Xi V2i

V2i

Xi V2i+1

V2i+1

⎞
⎟⎟⎠ .

We clearly have

M (n)
tn = 1√|Tn |

tn∑
i=1

Di = 1√|Tn | Mn+1 (11.2)
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where tn = |Tn |. Moreover, the increasing process associated to (M (n)
k ) is given by

〈M (n)〉k = 1

|Tn |
k∑

i=1

E
[
Di Dt

i |Gi−1
]
,

= 1

|Tn |
k∑

i=1

1

c2
i

(
σ 2

a Xi + σ 2
c ρ

ρ σ 2
b Xi + σ 2

d

)
⊗
(

X2
i Xi

Xi 1

)
a.s.

Consequently, it follows from convergence (5.3) that

lim
n→∞〈M (n)〉tn = L a.s.

It is now necessary to verify Lindeberg’s condition by use of Lyapunov’s condition. Denote

φn =
tn∑

k=1

E

[
‖M (n)

k − M (n)
k−1‖4

∣∣∣Gk−1

]
.

We obtain from (11.1) that

φn = 1

|Tn |2
tn∑

k=1

E

[
(1 + X2

k )2

c4
k

(V 2
2k + V 2

2k+1)
2

∣∣∣∣∣Gk−1

]
,

≤ 2

|Tn |2
tn∑

k=1

(
E[V 4

2k |Gk−1] + E[V 4
2k+1|Gk−1]

)
.

In addition, we already saw in Section 9 that

E[V 4
2n |Gn−1] ≤ μ4

acc2
n, E[V 4

2n+1|Gn−1] ≤ μ4
bdc2

n a.s.

where μ4
ac = μ4

a + μ4
c + 6σ 2

a σ 2
c and μ4

bd = μ4
b + μ4

d + 6σ 2
b σ 2

d . Hence,

φn ≤ 2μ4

|Tn |2
tn∑

k=1

c2
k a.s.

where μ4 = μ4
ac + μ4

bd . We can deduce from Lemma 5.2 that

lim
n→∞

1

|Tn |
∑
k∈Tn

c2
k = E[(1 + T )2] a.s.

which immediately implies that

lim
n→∞ φn = 0 a.s.

Therefore, Lyapunov’s condition is satisfied and Theorem 2.1.9 of Duflo (1997) allows us to
say via (11.2) that

1√|Tn−1| Mn
L−→ N (0, L).

Finally, we infer from (4.1) together with (9.7) and Slutsky’s lemma that√|Tn−1|(θ̂n − θ)
L−→ N (0, (I2 ⊗ A−1)L(I2 ⊗ A−1)).
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Proof of Theorem 5.7, second part We shall now establish the asymptotic normality given
by (5.11). Denote by N (n) = (N (n)

k ) the square integrable vector martingale defined as

N (n)
k = 1√|Tn |

k∑
i=1

v2i

di
�i .

We immediately see from (10.7) that

N (n)
tn = 1√|Tn | Qn(ηn+1 − η) = 1√|Tn | Nn+1. (11.3)

In addition, the increasing process associated to (N (n)
k ) is given by

〈N (n)〉k = 1

|Tn |
k∑

i=1

E

[
v2

2i

d2
i

�i�
t
i

∣∣∣∣∣Gi−1

]
,

= 1

|Tn |
k∑

i−1

1

d2
i

�i�
t
i (2σ 4

a X2
i + (μ4

a − 3σ 4
a + 4σ 2

a σ 2
c )Xi + μ4

c − σ 4
c ) a.s.

Consequently, we obtain from Lemma 5.2 that

lim
n→∞〈N (n)〉tn = E

[
2σ 4

a T 2 + (μ4
a − 3σ 4

a + 4σ 2
a σ 2

c )T + (μ4
c − σ 4

c )

(1 + T )4

(
T 2 T
T 1

)]
= Mac a.s.

In order to verify Lyapunov’s condition, let

φn =
tn∑

k=1

E

[
‖N (n)

k − N (n)
k−1‖3

∣∣∣Gk−1

]
.

We clearly have

‖N (n)
k − N (n)

k−1‖2 = 1

|Tn |
(1 + X2

k )v2
2k

d2
k

≤ 1

|Tn |
v2

2k

dk
,

which implies that

‖N (n)
k − N (n)

k−1‖3 ≤ 1

|Tn |3/2

|v2k |3
d3/2

k

.

However,

|v2k |3 = |V 2
2k − σ 2

a Xk − σ 2
c |3 ≤ (V 2

2k + σ 2
a Xk + σ 2

c )3

≤ V 6
2k + 3V 4

2k(σ
2
a Xk + σ 2

c ) + 3V 2
2k(σ

2
a Xk + σ 2

c )2 + (σ 2
a Xk + σ 2

c )3. (11.4)

We already saw that E[V 2
2k |Gk−1] = σ 2

a Xk + σ 2
c a.s. and it follows from (9.10) that

E[V 4
2k |Gk−1] ≤ μacc2

k a.s.

It only remains to study E[V 6
2k |Gk−1]. Denote

Ak =
Xk∑

i=1

(Yk,i − a) and Bk = ε2k − c.
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We clearly have from the identity V2k = Ak + Bk that

E[V 6
2k |Gk−1] = E[A6

k |Gk−1] + 15E[A4
k |Gk−1]E[B2

k |Gk−1]
+20E[A3

k |Gk−1]E[B3
k |Gk−1] + E[A2

k |Gk−1]E[B4
k |Gk−1]

+E[B6
k |Gk−1]. (11.5)

On the one hand, E[A2
k |Gk−1] = σ 2

a Xk a.s. and

E[A4
k |Gk−1] = μ4

a Xk + 3Xk(Xk − 1)σ 4
a a.s.

Moreover, we have from Cauchy–Schwarz inequality that∣∣E[A3
k |Gk−1]

∣∣ ≤ 2μ2
aσa X3/2

k a.s.

Furthermore, it follows from tedious but straightforward calculations that

E[A6
k |Gk−1] ≤ τ 6

a Xk + 15Xk(Xk − 1)μ4
aσ 2

a + 15σ 6
a Xk(Xk − 1)(Xk − 2)

+10μ6
a Xk(Xk − 1) a.s.

Then, it exists some constant α > 0 such that

E[A6
k |Gk−1] ≤ αc3

k a.s.

On the other hand, E[B2
k |Gk−1] = σ 2

c a.s. and E[B4
k |Gk−1] = μ4

c a.s. In addition∣∣E[B3
k |Gk−1]

∣∣ ≤ μ2
cσc and E[B6

k |Gk−1] ≤ τ 6
c a.s.

Consequently, we deduce from (11.5) that it exists some constant β > 0 such that

E[V 6
2k |Gk−1] ≤ βc3

k a.s.

which implies from (11.4) that for some constant γ > 0,

E[|v2k |3|Gk−1] ≤ γ c3
k a.s.

Then, as c2
k = dk , we can conclude that

φn ≤ γ√|Tn | a.s.

which immediately leads to

lim
n→∞ φn = 0 a.s.

Therefore, Lyapunov’s condition is satisfied and we find from Theorem 2.1.9 of Duflo (1997)
and (11.3) that

1√|Tn−1| Nn
L−→ N (0, Mac). (11.6)

Hence, we obtain from (10.6), (11.6) and Slutsky’s lemma that√|Tn−1|(ηn − η)
L−→ N (0, B−1 Mac B−1).

Finally, (5.7) ensures that√|Tn−1|(̂ηn − η)
L−→ N (0, B−1 Mac B−1).

The proof of (5.12) follows exactly the same lines. ��
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Proof of Theorem 5.7, third part It remains to establish the asymptotic normality given by
(5.13). Denote by H (n) = (H (n)

k ) the square integrable martingale defined as

H (n)
k = 1√|Tn |

k∑
i=1

(V2i V2i+1 − ρ). (11.7)

We clearly have from (10.8) that

H (n)
tn = √|Tn |(ρn+1 − ρ) = 1√|Tn | Hn+1.

Moreover, the increasing process of (H (n)
k ) is given by

〈H (n)〉k = 1

|Tn |
k∑

i=1

(
E[V 2

2i V 2
2i+1|Gn−1] − ρ2) .

As before, let

Ck =
Xk∑

i=1

(Zk,i − b) and Bk = ε2k+1 − d.

As V2k = Ak + Bk and V2k+1 = Ck + Dk , we clearly have

E
[

V 2
2k V 2

2k+1

∣∣Gk−1
] = E

[
A2

k

∣∣Gk−1
] (

E
[

C2
k

∣∣Gk−1
]+ E

[
D2

k

∣∣Gk−1
])

+E
[

B2
k

∣∣Gk−1
]
E
[

C2
k

∣∣Gk−1
]+ E

[
B2

k D2
k

∣∣Gk−1
]

a.s.

Consequently,

E
[

V 2
2k V 2

2k+1

∣∣Gk−1
] = σ 2

a σ 2
b X2

k + (
σ 2

a σ 2
d + σ 2

b σ 2
c

)
Xk + ν2 a.s. (11.8)

Then, we deduce once again from Lemma 5.2 that

lim
n→∞〈H (n)〉tn = σ 2

ρ a.s.

where σ 2
ρ is given by (5.14). In order to verify Lyapunov’s condition, denote

φn =
tn∑

k=1

E

[
|H (n)

k − H (n)
k−1|3

∣∣∣Gk−1

]
.

We obtain from (11.7) that

φn = 1

|Tn |3/2

tn∑
k=1

E
[ |V2k V2k+1 − ρ|3∣∣Gk−1

]
,

≤ 1

|Tn |3/2

tn∑
k=1

(
E
[ |V2k |3|V2k+1|3

∣∣Gk−1
]+ 3|ρ|E [V 2

2k V 2
2k+1

∣∣Gk−1
]

+ 3ρ2
E
[ |V2k ||V2k+1|| Gk−1

]+ |ρ|3) . (11.9)

It follows from Cauchy–Schwarz inequality together with the previous calculations that it
exists two constants α, β > 0 such that

E
[ |V2k ||V2k+1|| Gk−1

] ≤ αck a.s.
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and

E
[ |V2k |3|V2k+1|3

∣∣Gk−1
] ≤ βc3

k a.s.

In addition, we already saw from (11.8) that for some constant γ > 0

E
[

V 2
2k V 2

2k+1

∣∣Gk−1
] ≤ γ c2

k a.s.

Consequently, we obtain from (11.9) that for some constant δ > 0

φn ≤ δ

|Tn |3/2

tn∑
k=1

c3
k a.s.

which, via Lemma (5.2), leads to

lim
n→∞ φn = 0 a.s.

Hence, we can conclude that

H (n)
tn

L−→ N (0, σ 2
ρ ).

In other words √|Tn−1|(ρn − ρ)
L−→ N (0, σ 2

ρ ).

Finally, we find via (5.9) that√|Tn−1|(ρ̂n − ρ)
L−→ N (0, σ 2

ρ )

which achieves the proof of Theorem 5.7. ��
Acknowledgments The authors are thankful to the anonymous reviewer for his very careful reading of the
manuscript.

References

Al-Osh MA, Alzaid AA (1987) First-order integer-valued autoregressive (INAR(1)) process. J Time Ser Anal
8(3):261–275

Alzaid AA, Al-Osh M (1990) An integer-valued pth-order autoregressive structure (INAR(p)) process. J Appl
Probab 27(2):314–324

Bansaye V (2008) Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl.
Probab. 18(3):967–996

Bansaye V, Tran VC (2011) Branching Feller diffusion for cell division with parasite infection. ALEA Lat
Am J Probab Math Stat 8:95–127

Basawa IV, Zhou J (2004) Non-Gaussian bifurcating models and quasi-likelihood estimation. J Appl Probab
41A(2004):55–64 Stochastic methods and their applications

Bercu B, Blandin V (2014) A Rademacher–Menchov approach for random coefficient bifurcating autoregres-
sive processes. arXivmath.PR/1210.5835

Bercu B, De Saporta B, Gégout-Petit A (2009) Asymptotic analysis for bifurcating autoregressive processes
via a martingale approach. Electron J Probab 14(87):2492–2526

Blandin V (2014) Asymptotic results for bifurcating random coefficient autoregressive processes. Statistics
108:48

Cowan R, Staudte RG (1986) The bifurcating autoregressive model in cell lineage studies. Biometrics 42:769–
783

De Saporta B, Gégout-Petit A, Marsalle L (2011) Parameters estimation for asymmetric bifurcating autore-
gressive processes with missing data. Electron J Stat 5:1313–1353

123

Author's personal copy

http://arxiv.org/abs/arXivmath.PR/1210.5835


Stat Inference Stoch Process (2015) 18:33–67 67

De Saporta B, Gégout-Petit A, Marsalle L (2012) Asymmetry tests for bifurcating auto-regressive processes
with missing data. Stat Probab Lett 82(7):1439–1444

De Saporta B, Gégout-Petit A, Marsalle L (2014) Statistical study of asymmetry in cell lineage data. Comput
Stat Data Anal 69:15–39

Delmas J-F, Marsalle L (2010) Detection of cellular aging in a Galton–Watson process. Stoch Process Appl
120(12):2495–2519

Duflo M (1997) Random iterative models, vol 34. Springer, Berlin
Guyon J (2007) Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging.

Ann Appl Probab 17(5–6):1538–1569
Hall P, Heyde CC (1980) Martingale limit theory and its application. Academic Press Inc. [Harcourt Brace

Jovanovich Publishers], New York. Probability and Mathematical Statistics
Heyde CC, Seneta E (1972) Estimation theory for growth and immigration rates in a multiplicative process. J

Appl Probab 9:235–256
Huggins RM, Basawa IV (1999) Extensions of the bifurcating autoregressive model for cell lineage studies.

J Appl Probab 36(4):1225–1233
Huggins RM, Basawa IV (2000) Inference for the extended bifurcating autoregressive model for cell lineage

studies. Aust N Z J Stat 42(4):423–432
Huggins RM, Staudte RG (1994) Variance components models for dependent cell populations. J Am Stat

Assoc 89(425):19–29
Kachour M, Yao JF (2009) First-order rounded integer-valued autoregressive (RINAR(1)) process. J Time Ser

Anal 30(4):417–448
McKenzie E (1985) Some simple models for discrete variate time series. J Am Water Res Assoc 21:645–650
Nicholls DF, Quinn BG (1980) The estimation of random coefficient autoregressive models. I. J Time Ser

Anal 1(1):37–46
Nicholls DF, Quinn BG (1982) Random coefficient autoregressive models: an introduction, vol. 11 of Lecture

Notes in Statistics. Springer, New York. Lecture Notes in Physics, 151
Quinn BG, Nicholls DF (1981) The estimation of random coefficient autoregressive models. II. J Time Ser

Anal 2(3):185–203
Wei CZ (1987) Adaptive prediction by least squares predictors in stochastic regression models with applications

to time series. Ann Stat 15(4):1667–1682
Wei CZ, Winnicki J (1990) Estimation of the means in the branching process with immigration. Ann Stat

18(4):1757–1773
Winnicki J (1991) Estimation of the variances in the branching process with immigration. Probab Theory

Relat Fields 88(1):77–106
Zhou J, Basawa IV (2005) Least-squares estimation for bifurcating autoregressive processes. Stat Probab Lett

74(1):77–88
Zhou J, Basawa IV (2005) Maximum likelihood estimation for a first-order bifurcating autoregressive process

with exponential errors. J Time Ser Anal 26(6):825–842

123

Author's personal copy


	Limit theorems for bifurcating integer-valued autoregressive processes
	Abstract
	1 Introduction
	2 Bifurcating integer-valued autoregressive processes
	3 Weighted least-squares estimation
	4 A martingale approach
	5 Main results
	6 Proof of Lemma 5.1
	7 Proof of Lemma 5.2
	8 Proof of Proposition 5.3
	9 Proof of Theorem 5.4
	10 Proof of Theorem 5.5
	11 Proof of Theorem 5.7
	Acknowledgments
	References


