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Abstract

We investigate the asymptotic behavior of the least squares estimator of the unknown parameters
of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and
environmental effects, we establish the almost sure convergence of our estimates. In addition, we also prove
a quadratic strong law and central limit theorems. Our approach mainly relies on asymptotic results for
vector-valued martingales together with the well-known Rademacher–Menchov theorem.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to study random coefficient bifurcating autoregressive processes
(RCBAR). One can see those processes in two different ways. The first one is to see them as
random coefficient autoregressive processes (RCAR) adapted to binary tree structured data,
the second one is to consider those processes as the association of RCAR processes and
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bifurcating autoregressive processes (BAR). BAR processes have been first studied by Cowan
and Staudte [10] while RCAR processes have been first investigated by Nicholls and Quinn
[26,27]. The RCBAR structure allows us to reckon with environmental and inherited effects in
order to better take into account the evolution of the characteristic under study. One shall see cell
division as an example of binary tree structured data.

Let us detail what a RCBAR process is. The first individual is designated as the individual 1
and each individual n leads to individuals 2n and 2n + 1. The random variable Xn will stand for
the characteristic under study of individual n. We can now make explicit the first-order RCBAR
process which is given, for all n ≥ 1, by

X2n = an Xn + ε2n,

X2n+1 = bn Xn + ε2n+1,
(1.1)

where the driven noise sequence (ε2n, ε2n+1) represents the environmental effect while the
random coefficient sequence (an, bn) represents the inherited effect. The example of the cell
division incites us to suppose that ε2n and ε2n+1 are correlated since the environmental effect on
two sister cells can reasonably be seen as correlated. Denote by a and b the conditional means of
the random coefficient sequences (an) and (bn). Moreover, let c and d be the conditional means
of the driven noises (ε2n) and (ε2n+1), respectively. If θn stands for the least squares estimator
of the unknown vector of means θ t

= (a, c, b, d), we shall prove, under suitable assumptions
on inherited and environmental effects, thatθn converges almost surely to θ with the almost sure
rate of convergence

∥θn − θ∥2
= O

 n

2n


a.s.

In addition, we shall also establish the asymptotic normality

√
2n(θn − θ)

L
−→ N (0,Γ−1LΓ−1)

where the matrices L and Γ will be explicitly calculated.
Our theoretical approach is motivated by experiments on the single celled organism

Escherichia coli which reproduces by dividing itself into two poles, one being called the new
pole, the other being called the old pole. We refer the reader to the pioneer work on statistical
analysis of Escherichia coli carried out by Stewart et al. [30] and Guyon et al. [18], as well
as to the recent contribution of de Saporta et al. [13,15]. It was empirically shown in this
statistical analysis of experimental data that some variables among cell lines, such as the life
span of the cells, do not evolve in the same way whether it is related to the new or the old
pole. The difference in the evolution leads us to consider an asymmetric RCBAR. Considering
a RCBAR process instead of a BAR process [14] allows us to assume that the inherited effect is
no more deterministic, as randomness often appears in nature. Moreover, we can consider both
deterministic and random inherited effects since we also allow the random variables modeling
the inherited effect to be deterministic, making this study usable for RCBAR as well as BAR.

Our goal is to investigate the asymptotic behavior of the least squares estimators of the
unknown parameters of first-order RCBAR processes. In contrast with the previous work of
Blandin [9] where the asymptotic behavior of weighted least squares estimators was investigated,
we propose here to make use of a totally different strategy based on the standard least squares
(LS) estimators together with the well-known Rademacher–Menchov theorem. The martingale
approach for BAR processes has been first suggested by Bercu et al. [6], followed by de Saporta
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et al. [12]. We also refer the reader to Bercu and Blandin [5] for the study of bifurcating integer-
valued autoregressive processes and to Bansaye [3] for the study of its asymptotic behavior,
as well as to the recent contribution of Djellout and Bitseki Penda [8] on moderate deviation
principles for the LS estimators of the unknown parameters of BAR processes. Our approach
relies on the Rademacher–Menchov theorem which allows us to study the LS estimates in a
different way as in de Saporta et al. [14]. In particular, it enables us to significantly reduce
the moment assumptions on the random coefficient sequence (an, bn) and on the driven noise
sequence (ε2n, ε2n+1). We shall also make use of the strong law of large numbers and the
central limit theorem for martingales [16,19] in order to study the asymptotic behavior of our
LS estimates. The martingale approach of this paper has also been used by Basawa and Zhou
[4,37,38].

Since several methods have been proposed for the study of BAR processes, we tried to take
into consideration each of them. In this way, we took into account the classical BAR approach
as used by Huggins and Basawa [21,22] and by Huggins and Staudte [23] who investigated
the evolution of cell diameters and lifetimes. We were also inspired by the bifurcating Markov
chain approach brought in by Guyon [17] and applied by Delmas and Marsalle [11]. We also
reckoned with the analogy with the Galton–Watson processes as in Delmas and Marsalle [11]
and Heyde and Seneta [20]. Even though we chose to use LS estimates, different methods have
been investigated for parameter estimation in RCAR processes. We have chosen to make use of
the least squares approach instead of the quasi-maximum likelihood method proposed by Aue
et al. [1,2] as well as Berkes et al. [7]. The reason why we have chosen LS estimates is twofold.
On the one hand, the LS method allows us to avoid the maximization step of the quasi-likelihood
method, which could be time-consuming and costly. On the other hand, except in Theorem 3
of [7], it is necessary to know the variance σ 2 of the driven noise, in order to estimate the RCA
parameters. Moreover, σ 2 cannot be estimated by the quasi-maximum likelihood method. Via
our least squares approach, it is possible to consistently estimate all the conditional variances of
the random coefficients and driven noises. We also refer the reader to Koul and Schick [24] for
the M-estimation method, see also Vaněček [35] and Schick [29].

The paper is organized as follows. We will explain more accurately the model we will consider
in Section 2, leading to Section 3 where we will give explicitly our LS estimates of the unknown
parameters under study. The martingale point of view chosen in this paper will be highlighted
in Section 4. All our results about the asymptotic behavior of our LS estimates will be stated in
Section 5, in particular the almost sure convergence, the quadratic strong law and the asymptotic
normality. Section 6 is devoted to the Rademacher–Menchov theorem. All technical proofs are
postponed to the last sections.

2. Random coefficient bifurcating autoregressive processes

We will study the first-order RCBAR process given, for all n ≥ 1, by
X2n = an Xn + ε2n,

X2n+1 = bn Xn + ε2n+1,
(2.1)

where X1 is the ancestor of the process and (ε2n, ε2n+1) is the driven noise of the process. We
will suppose that E[X16

1 ] < ∞ and we will also assume that the two sequences (an, bn) and
(ε2n, ε2n+1) are independent and identically distributed and that X1, (an, bn) and (ε2n, ε2n+1)

are mutually independent. RCBAR processes can be seen as a first-order random coefficient
autoregressive process on a binary tree, each node of this tree representing an individual and the
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Fig. 1. The tree associated with the RCBAR.

first node being the ancestor. For all n ≥ 0, Gn will stand for the nth generation, that is to say
Gn = {2n, 2n

+ 1, . . . , 2n+1
− 1}. We will also denote by Tn the set of all individuals up to the

nth generation, namely

Tn =

n
k=0

Gk .

One can see that the cardinality |Gn| of Gn is 2n , while that of Tn is 2n+1
− 1. Grn will denote

the generation of individual n with rn = [log2(n)] where [x] stands for the integer part of x . Let
us recall that the two offspring of individual n are individuals 2n and 2n + 1 (see Fig. 1).

3. Least squares estimators

Let (Fn) be the natural filtration associated with the generations of our first-order RCBAR
(Xn), namely Fn = σ {Xk, k ∈ Tn} for all n ∈ N. Throughout the sequel, we will assume that
for all n ≥ 0 and for all k ∈ Gn ,

E[ak |Fn] = a, E[bk |Fn] = b,

E[ε2k |Fn] = c, E[ε2k+1|Fn] = d a.s.
(3.1)

Consequently, (2.1) can be rewritten as
X2n = aXn + c + V2n,

X2n+1 = bXn + d + V2n+1,
(3.2)

where, for all k ∈ Gn , V2k = X2k − E[X2k |Fn] and V2k+1 = X2k+1 − E[X2k+1|Fn]. We can
rewrite the system (3.2) in a classic autoregressive form

χn = θ tΦn + Wn (3.3)

where

χn =


X2n

X2n+1


, Φn =


Xn
1


, Wn =


V2n

V2n+1


,
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and the matrix parameter θ given by

θ =


a b
c d


.

One of our goal is to estimate θ from the observation of the n + 1 first generations, namely Tn .
We will use the least squares estimatorθn of θ which minimizes

∆n(θ) =


k∈Tn−1

∥χk − θ tΦk∥
2.

Hence, we clearly have

θn = S−1
n−1


k∈Tn−1

Φkχ
t
k where Sn =


k∈Tn

ΦkΦt
k . (3.4)

In order to avoid any invertibility assumption, we will suppose that Sn is invertible. Otherwise,
we only have to add the identity matrix of order 2, I2, to Sn . Moreover, we will make a slight
abuse of notation by identifying θ andθn to

vec(θ) =


a
c
b
d

 and vec(θn) =


ancnbndn

 .
In this vectorial form, we have

θn = Σ−1
n−1


k∈Tn−1


Xk X2k

X2k
Xk X2k+1

X2k+1

 ,
where Σn = I2 ⊗ Sn and ⊗ stands for the standard Kronecker product. Hence, (3.3) yields

θn − θ = Σ−1
n−1


k∈Tn−1


Xk V2k

V2k
Xk V2k+1

V2k+1

 . (3.5)

Throughout this paper, we will make use of the following hypotheses on the moments of the
random coefficient sequence (an, bn) and on the driven noise sequence (ε2n, ε2n+1). One can
observe that for all n ≥ 0 and for all k ∈ Gn , the random coefficients ak , bk and the driven noise
ε2k , ε2k+1 are Fn+1-measurable.

(H.1) For all n ≥ 1,

E[a16
n ] < 1 and E[b16

n ] < 1,

E[ε16
2n] < ∞ and E[ε16

2n+1] < ∞.

(H.2) For all n ≥ 0 and for all k ∈ Gn

Var[ak |Fn] = σ 2
a ≥ 0 and Var[bk |Fn] = σ 2

b ≥ 0 a.s.

Var[ε2k |Fn] = σ 2
c > 0 and Var[ε2k+1|Fn] = σ 2

d > 0 a.s.
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(H.3) There exist ρ2
ab ≤ σ 2

a σ
2
b and ρ2

cd < σ 2
c σ

2
d such that for all n ≥ 0 and for all k ∈ Gn

E[(ak − a)(bk − b)|Fn] = ρab a.s.

E[(ε2k − c)(ε2k+1 − d)|Fn] = ρcd a.s.

Moreover, for all n ≥ 0 and k, l ∈ Gn with k ≠ l, (ε2k, ε2k+1) and (ε2l , ε2l+1) as well as
(ak, bk) and (al , bl) are conditionally independent given Fn .

(H.4) One can find µ4
a ≥ σ 4

a , µ
4
b ≥ σ 4

b , µ
4
c > σ 4

c and µ4
d > σ 4

d such that, for all n ≥ 0 and for
all k ∈ Gn

E

(ak − a)4 |Fn


= µ4

a and E

(bk − b)4 |Fn


= µ4

b a.s.

E

(ε2k − c)4 |Fn


= µ4

c and E

(ε2k+1 − d)4 |Fn


= µ4

d a.s.

E[ε4
2k] > E[ε2

2k]
2 and E[ε4

2k+1] > E[ε2
2k+1]

2.

In addition, there exist ν2
ab ≥ ρ2

ab and ν2
cd > ρ2

cd such that, for all k ∈ Gn

E[(ak − a)2(bk − b)2|Fn] = ν2
ab and

E[(ε2k − c)2(ε2k+1 − d)2|Fn] = ν2
cd a.s.

(H.5) There exist some α > 4 such that

sup
n≥0

sup
k∈Gn

E[|ak − a|
α
|Fn] < ∞, sup

n≥0
sup

k∈Gn

E[|bk − b|
α
|Fn] < ∞ a.s.

sup
n≥0

sup
k∈Gn

E[|ε2k − c|α|Fn] < ∞, sup
n≥0

sup
k∈Gn

E[|ε2k+1 − d|
α
|Fn] < ∞ a.s.

One can observe that hypothesis (H.2) allows us to consider a classical BAR process where
ak = a and bk = b a.s. Moreover, under assumptions (H.2) and (H.3), we have for all n ≥ 0 and
for all k ∈ Gn

E[V 2
2k |Fn] = σ 2

a X2
k + σ 2

c , E[V 2
2k+1|Fn] = σ 2

b X2
k + σ 2

d a.s. (3.6)

E[V2k V2k+1|Fn] = ρab X2
k + ρcd a.s. (3.7)

We deduce from (3.6) that, for all n ≥ 1, V 2
2n = ηtψn + v2n where v2n = V 2

2n − E

V 2

2n|Frn


,

η =

σ 2

a σ 2
c

t
and ψn =


X2

n 1
t
.

It leads us to estimate the vector of variances η by the least squares estimator

ηn = Q−1
n−1


k∈Tn−1

V 2
2kψk where Qn =


k∈Tn

ψkψ
t
k (3.8)

and for all k ∈ Gn ,V2k = X2k −an Xk −cn,V2k+1 = X2k+1 −bn Xk − dn .

We clearly have a similar expression for the estimator of the vector of variances ζ =

σ 2

b σ 2
d

t
by replacing V2k by V2k+1 into (3.8). It also follows from (3.7) that, for all n ≥ 1, V2n V2n+1 =

νtψn + w2n where w2n = V2n V2n+1 − E

V2n V2n+1|Frn


and ν is the vector of covariances

ν =

ρab ρcd

t
.
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Therefore, we can estimate ν by

νn = Q−1
n−1


k∈Tn−1

V2kV2k+1ψk . (3.9)

4. A martingale approach

We already saw that relation (3.5) can be rewritten as

θn − θ = Σ−1
n−1 Mn where Mn =


k∈Tn−1


Xk V2k

V2k
Xk V2k+1

V2k+1

 . (4.1)

The key point of this study is to remark that (Mn) is a locally square integrable martingale, which
allows us to make use of asymptotic results for martingales. This justifies our vectorial notation
introduced previously since most of those asymptotic results have been established for vector-
valued martingales. In order to study this martingale, let us rewrite Mn in a more convenient way.
Let Ψn = I2 ⊗ ϕn where ϕn is the 2 × 2n matrix given by

ϕn =


X2n X2n+1 · · · X2n+1−1
1 1 · · · 1


.

The first line of ϕn gathers the individuals of the nth generation, ϕn can also be seen as the
collection of all Φk, k ∈ Gn . Let ξn be the random vector of dimension 2n gathering the noise
variables of Gn , namely

ξ t
n =


V2n V2n+2 · · · V2n+1−2 V2n+1 V2n+3 · · · V2n+1−1


.

The special ordering separating odd and even indices has been made in Bercu et al. [6] in order
to rewrite Mn as

Mn =

n
k=1

Ψk−1ξk .

It clearly follows from (H.1) to (H.3) that (Mn) is a locally square integrable martingale with
increasing process given, for all n ≥ 1, by

⟨M⟩n =

n−1
k=0

ΨkE[ξk+1ξ
t
k+1|Fk]Ψ t

k =

n−1
k=0

Lk a.s. (4.2)

where

Ln =


k∈Gn


P(Xk) Q(Xk)

Q(Xk) R(Xk)


⊗


X2

k Xk
Xk 1


(4.3)

with 
P(X) = σ 2

a X2
+ σ 2

c ,

Q(X) = ρab X2
+ ρcd ,

R(X) = σ 2
b X2

+ σ 2
d .

(4.4)
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The first step of our approach will be to establish the convergence of ⟨M⟩n properly normalized,
from which we will be able to deduce several asymptotic results for our RCBAR estimates.

5. Main results

Lemma 5.1. Assume that (H.1) is satisfied. Then, we have for all p ∈ {1, 2, . . . , 8},

lim
n→∞

1
|Tn|


k∈Tn

X p
k = sp a.s. (5.1)

where sp is a constant depending only on the moments of a1, b1, ε2 and ε3 up to the pth order.

Remark 5.2. In particular, we have

s1 =
c + d

2 − (a + b)
,

s2 =
2

2 − (σ 2
a + σ 2

b + a2 + b2)


(ac + bd)(c + d)

2 − (a + b)
+
σ 2

c + σ 2
d + c2

+ d2

2


,

and explicit expressions for s3 to s8 are given at the end of Section 7.

Proposition 5.3. Assume that (H.1)–(H.3) are satisfied. Then, we have

lim
n→∞

⟨M⟩n

|Tn−1|
= L a.s. (5.2)

where L is the positive definite matrix given by

L =


σ 2

c ρcd

ρcd σ 2
d


⊗ C +


σ 2

a ρab

ρab σ 2
b


⊗ D,

where

C =


s2 s1
s1 1


and D =


s4 s3
s3 s2


. (5.3)

Remark 5.4. One can observe in the proof of Lemma 5.1 that we only need to assume for
convergence (5.2) that

E[a8
n] < 1, E[b8

n] < 1, sup
n≥1

E[ε8
2n] < ∞, sup

n≥1
E[ε8

2n+1] < ∞.

Our first result deals with the almost sure convergence of the LS estimatorθn . We will denote by
∥x∥ the euclidean norm of a vector x .

Theorem 5.5. Assume that (H.1)–(H.3) are satisfied. Then,θn converges almost surely to θ with
the almost sure rate of convergence

∥θn − θ∥2
= O


n

|Tn−1|


a.s.
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In addition, we also have the quadratic strong law

lim
n→∞

1
n

n
k=1

|Tk−1|(θk − θ)tΓΛ−1Γ (θk − θ) = Tr(Λ−1/2LΛ−1/2) a.s. (5.4)

where

Λ = I2 ⊗ (C + D) and Γ = I2 ⊗ C.

Our second result concerns the almost sure asymptotic properties of our least squares variance
and covariance estimatorsηn ,ζn andνn . We need to introduce some new variables

ηn = Q−1
n−1


k∈Tn−1

V 2
2kψk, ζn = Q−1

n−1


k∈Tn−1

V 2
2k+1ψk,

νn = Q−1
n−1


k∈Tn−1

V2k V2k+1ψk .

Theorem 5.6. Assume that (H.1)–(H.3) are satisfied. Then, ηn and ζn both converge almost
surely to η and ζ respectively. More precisely,

∥ηn − ηn∥ = O


n

|Tn−1|


a.s. (5.5)

∥ζn − ζn∥ = O


n

|Tn−1|


a.s. (5.6)

In addition,νn converges almost surely to ν with

∥νn − νn∥ = O


n

|Tn−1|


a.s. (5.7)

Remark 5.7. We also have the less precise almost sure rates of convergence to the true
parameters

∥ηn − η∥2
= O


n

|Tn−1|


, ∥ζn − ζ∥2

= O


n

|Tn−1|


,

∥νn − ν∥2
= O


n

|Tn−1|


a.s.

Finally, our last result is devoted to the asymptotic normality of our least squares estimatesθn, ηn, ζn andνn .

Theorem 5.8. Assume that (H.1)–(H.5) are satisfied. Then, we have the asymptotic normality
|Tn−1|(θn − θ)

L
−→ N (0,Γ−1LΓ−1). (5.8)

In addition, we also have
|Tn−1| (ηn − η)

L
−→ N (0, A−1 Mac A−1), (5.9)

|Tn−1|
ζn − ζ

 L
−→ N (0, A−1 Mbd A−1), (5.10)
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where

A =


s4 s2
s2 1


,

Mac = (µ4
a − σ 4

a )


s8 s6
s6 s4


+ 4σ 2

a σ
2
c


s6 s4
s4 s2


+ (µ4

c − σ 4
c )


s4 s2
s2 1


,

Mbd = (µ4
b − σ 4

b )


s8 s6
s6 s4


+ 4σ 2

b σ
2
d


s6 s4
s4 s2


+ (µ4

d − σ 4
d )


s4 s2
s2 1


.

Finally,
|Tn−1| (νn − ν)

L
−→ N


0, A−1 H A−1


(5.11)

where

H = (ν2
ab − ρ2

ab)


s8 s6
s6 s4


+ (σ 2

a σ
2
d + σ 2

b σ
2
c + 2ρabρcd)


s6 s4
s4 s2


+ (ν2

cd − ρ2
cd)


s4 s2
s2 1


.

The rest of the paper is dedicated to the proof of our main results.

6. On the Rademacher–Menchov theorem

Our almost sure convergence results rely on the Rademacher–Menchov theorem for
orthonormal sequences of random variables given by Rademacher [28] and Menchoff [25],
see Stout [31] and also Tandori [33,34] and an unpublished note of Talagrand [32] for some
extensions of this result.

Theorem 6.1. Let (Xn) be an orthonormal sequence of square integrable random variables
which means that for all n ≠ k, E[Xn Xk] = 0 and E[X2

n] = 1. Assume that a sequence of
real numbers (an) satisfies

∞
n=1

a2
n(log n)2 < ∞. (6.1)

Then, the following series converges almost surely

∞
n=1

an Xn . (6.2)

Remark 6.2. One can observe that (Xn) is a square integrable sequence but is neither a sequence
of independent random variables nor a sequence of uncorrelated random variables since (Xn) is
not necessarily centered. In addition, in the case where (Xn) is an orthogonal sequence of random
variables, we have the same result (6.2), replacing (6.1) by

∞
n=1

a2
nE[X2

n](log n)2 < ∞.
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If an = 1/n, it follows from (6.2) and Kronecker’s lemma that

lim
n→∞

1
n

n
k=1

Xk = 0 a.s.

7. Proof of the keystone Lemma 5.1

We shall introduce some suitable notations. Let (βn) be the sequence defined, for all n ≥ 1,
by β2n = an and β2n+1 = bn . Then, (2.1) can be rewritten as

X2n = β2n Xn + ε2n,

X2n+1 = β2n+1 Xn + ε2n+1.

Consequently, for all n ≥ 2

Xn = βn X n
2

 + εn .

First of all, let us prove that

lim
n→∞

1
|Tn|

Ln = s1 where Ln =


k∈Tn

Xk .

One can observe that

Ln = X1 +


k∈Tn\T0


βk X k

2

 + εk


= X1 + (a + b)Ln−1 + An−1 + Bn−1 + En−1,

where

An =


k∈Tn

Xk(ak − a), Bn =


k∈Tn

Xk(bk − b), En =


k∈Tn

(ε2k + ε2k+1).

Hence, we obtain that

Ln

2n+1 =
X1

2n+1 +
a + b

2
Ln−1

2n +
An−1

2n+1 +
Bn−1

2n+1 +
En−1

2n+1

=


a + b

2

n L0

2
+

n
k=1


a + b

2

n−k  X1

2k+1 +
Ak−1

2k+1 +
Bk−1

2k+1 +
Ek−1

2k+1


. (7.1)

Recalling that |Tn| = 2n+1
− 1, the standard strong law of large numbers immediately implies

that

lim
n→∞

En

2n+1 = E[ε2 + ε3] = c + d a.s.

Let us tackle the limit of An using the Rademacher–Menchov theorem given in Theorem 6.1. Let
Yn and Rn be defined as

Yn = Xn(an − a) and Rn =

n
k=1

Yk .

For all n ≥ 0 and for all k ∈ Gn, E[ak − a|Fn] = 0. Moreover, we clearly have for all n ≥ 2
and for all different k, l ∈ Gn ,
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E[YkYl ] = E [E[Xk Xl(ak − a)(al − a)|Fn]]

= E [Xk XlE[ak − a|Fn]E[al − a|Fn]] = 0.

It means that (Yn) is a sequence of orthogonal random variables. In addition we have, for all
n ≥ 0 and for all k ∈ Gn ,

E[Y 2
k ] = E


E[X2

k (ak − a)2|Fn]


= E


X2

k E[(ak − a)2|Fn]


= σ 2

a E[X2
k ].

In order to calculate E[X2
n], let us remark, with the convention that a product over an empty set

is equal to 0, that for all n ≥ 1,

Xn =


rn−1
k=0

β n
2k

 X1 +

rn−1
k=0


k−1
i=0

β n
2i

 ε n
2k

.
Consequently,

E[X2
n] = E


rn−1
k=0

β2
n

2k




X2
1


+ 2

rn−1
k=0

E


rn−1
l=0

β n
2l

 X1


k−1
i=0

β n
2i

 ε n
2k



+ E

rn−1
k=0


k−1
i=0

β n
2i

 ε n
2k

2
 .

First of all,

E


rn−1
k=0

β2
n

2k




X2
1


= E[X2

1]

rn−1
k=0

E


β2

n
2k




≤ E[X2
1] max(E[a2

1],E[b2
1])

rn ≤ E[X2
1].

Next, for the cross termrn−1
k=0

E


rn−1
l=0

β n
2l

 X1


k−1
i=0

β n
2i

 ε n
2k


=

E[X1]

rn−1
k=0


k−1
i=0

E


β2

n
2i




rn−1
l=k+1

E

β n

2l

E

β n

2k

ε n
2k


≤ E[|X1|] max(|ac|, |bd|)

max(|a|, |b|)rn − max(E[a2
1],E[b2

1])
rn

max(|a|, |b|)− max(E[a2
1],E[b2

1])

≤ E[|X1|] max(|ac|, |bd|)
1max(|a|, |b|)− max(E[a2

1],E[b2
1])
 .

By the same token, it is not hard to see that the last term is also bounded. Consequently, we
proved that there exists some positive constant µ such that, for all n ≥ 0, E[X2

n] ≤ µ, leading to

∞
n=1

1

n2 E[Y 2
n ](log n)2 ≤ σ 2

aµ

∞
n=1

(log n)2

n2 < ∞.
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Therefore, it follows from the Rademacher–Menchov theorem that the series

∞
n=1

1
n

Yn

converges a.s. Consequently, Kronecker’s lemma implies that

lim
n→∞

1
n

n
k=1

Yk = lim
n→∞

1
n

Rn = 0 a.s.

In particular

lim
n→∞

1
|Tn|

R|Tn | = lim
n→∞

1
|Tn|

An = 0 a.s.

Hence, we find that

lim
n→∞

1

2n+1 An = 0 a.s.

By the same token, we also have

lim
n→∞

1

2n+1 Bn = 0 a.s.

To sum up, we obtain that

lim
n→∞

X1

2n+1 +
An−1

2n+1 +
Bn−1

2n+1 +
En−1

2n+1 =
c + d

2
a.s. (7.2)

Therefore, we deduce from (7.1) and (7.2) together with the assumption that max(|a|, |b|) < 1
and Lemma A.3 of [6], that

lim
n→∞

Ln

2n+1 =
c + d

2
1

1 −
a+b

2

a.s. (7.3)

which means that

lim
n→∞

1
|Tn|


k∈Tn

Xk =
c + d

2 − (a + b)
a.s.

Let us now tackle the study of

Kn =


k∈Tn

X2
k .

First, one can observe that

Kn =


k∈Tn

X2
k = X2

1 +


k∈Tn\T0


βk X k

2

 + εk

2

= X2
1 +

 
k∈Tn\T0

β2
k X2

k
2




+ 2

 
k∈Tn\T0

βkεk X k
2

+

 
k∈Tn\T0

ε2
k


= X2

1 + (σ 2
a + σ 2

b + a2
+ b2)Kn−1 + 2(ac + bd)Ln−1 + An−1 + Bn−1 + En−1,
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where

An =


k∈Tn

X2
k (a

2
k + b2

k − (σ 2
a + σ 2

b + a2
+ b2)),

Bn =


k∈Tn

Xk(akε2k + bkε2k+1 − (ac + bd)) and En =


k∈Tn

(ε2
2k + ε2

2k+1).

Hence, we obtain, as for Ln

Kn

2n+1 = µn K0

2
+

n
k=1

µn−k


X2

1

2k+1 + ν
Lk−1

2k +
Ak−1

2k+1 +
Bk−1

2k+1 +
Ek−1

2k+1


,

where, since E[a2
k ] = σ 2

a + a2 < 1 and E[b2
k ] = σ 2

b + b2 < 1,

µ =
σ 2

a + σ 2
b + a2

+ b2

2
< 1 and ν = ac + bd.

As previously, the strong law of large numbers leads to

lim
n→∞

1
|Tn|

En = σ 2
c + σ 2

d + c2
+ d2 a.s. (7.4)

Moreover, it follows once again from the Rademacher–Menchov theorem with Kronecker’s
lemma, (7.3), (7.4) and Lemma A.3 of [6] that

lim
n →∞

Kn

2n+1 =
1

1 − µ


ν

c + d

2 − (a + b)
+
σ 2

c + σ 2
d + c2

+ d2

2


a.s.

leading to convergence (5.1) for p = 2. We shall not carry out the proof of (5.1) for 3 ≤ p ≤ 8
inasmuch as it follows essentially the same lines that those for p = 2. One can observe that,
in order to prove (5.1) for 3 ≤ p ≤ 8, it is necessary to assume that E[a2p

1 ] < 1,E[b2p
1 ] <

1,E[ε
2p
2 ] < ∞ and E[ε

2p
3 ] < ∞. The limiting values s3 to s8 may be explicitly calculated. More

precisely, for all p ∈ {1, 2, . . . , 8}, denote

Ap = E[a p
1 ], Bp = E[bp

1 ], C p = E[ε
p
2 ], Dp = E[ε

p
3 ].

We already saw that

s1 =
C1 + D1

2 − (A1 + B1)
and s2 =

2
2 − (A2 + B2)


(A1C1 + B1 D1)s1 +

C2 + D2

2


.

The other limiting values s3 to s8 of convergence (5.1) can be recursively calculated via the linear
relation

sp =
2

2 − (Ap + Bp)


p−1
k=1

1
2

 p

k


(AkC p−k + Bk Dp−k)sk +

C p + Dp

2


.

8. Proof of Proposition 5.3

The almost sure convergence (5.2) is immediate through (4.2), (4.3) and Lemma 5.1. Let us
now prove that L is a positive definite matrix. First, the matrices
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σ 2

a ρab

ρab σ 2
b


and


σ 2

c ρcd

ρcd σ 2
d


are clearly positive semidefinite and positive definite under (H.3). Moreover, D is clearly positive
semidefinite since

lim
n→∞

1
|Tn|


k∈Tn


X4

k X3
k

X3
k X2

k


= D a.s.

Finally, let us prove that C is positive definite. Its trace is clearly greater than 1, hence we only
have to prove that its determinant is positive. Its determinant is given by

s2 − s2
1 =

σ 2
c + σ 2

d

2 −

σ 2

a + σ 2
b + a2 + b2

 +


c + d

2 − (a + b)

2 σ 2
a + σ 2

b

2 −

σ 2

a + σ 2
b + a2 + b2


+

2

2 −

σ 2

a + σ 2
b + a2 + b2

 (ad − bc + c − d)2

(2 − (a + b))2
.

The first term of this sum is positive since under (H.1) σ 2
a + σ 2

b + a2
+ b2 < 2 and since under

(H.2) σ 2
c +σ 2

d > 0. Moreover, the two other terms are clearly nonnegative, which proves that this
matrix is positive definite. Since the Kronecker product of two positive semidefinite (respectively
positive definite) matrices is a positive semidefinite (respectively positive definite) matrix, we can
conclude that L is positive definite.

9. Proofs of the almost sure convergence results

We shall make use of a martingale approach, as the one developed by Bercu et al. [6] or de
Saporta et al. [14]. For all n ≥ 1, let

Vn = M t
n P−1

n−1 Mn = (θn − θ)tΣn−1 P−1
n−1Σn−1(θn − θ)

where

Pn =


k∈Tn

(1 + X2
k )I2 ⊗


X2

k Xk
Xk 1


.

By the same calculations as in [6], we can easily see that if 1Mn = Mn − Mn−1,

Vn+1 + An = V1 + Bn+1 + Wn+1, (9.1)

where

An =

n
k=1

M t
k(P

−1
k−1 − P−1

k )Mk,

Bn+1 = 2
n

k=1

M t
k P−1

k 1Mk+1 and Wn+1 =

n
k=1

1M t
k+1 P−1

k 1Mk+1.

Lemma 9.1. Assume that (H.1)–(H.3) are satisfied. Then, we have

lim
n→∞

Wn

n
=

1
2

tr((I2 ⊗ (C + D))−1/2L(I2 ⊗ (C + D))−1/2) a.s. (9.2)
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where C and D are the matrices given by (5.3). In addition, we also have

Bn+1 = o(n) a.s. (9.3)

and

lim
n→∞

Vn+1 + An

n
=

1
2

tr((I2 ⊗ (C + D))−1/2L(I2 ⊗ (C + D))−1/2) a.s. (9.4)

Proof. The proof of convergence (9.2) is left to the reader inasmuch as it follows essentially the
same arguments as the proof of Lemma B.3 in [6]. In particular, we also find that

lim
n→∞

Pn

|Tn|
= I2 ⊗ (C + D) a.s. (9.5)

We shall proceed to the proof of (9.3). We clearly have

Bn+1 = 2
n

k=1

M t
k P−1

k 1Mk+1 = 2
n

k=1

M t
k P−1

k Ψkξk+1.

Hence, (Bn) is a square integrable martingale. In addition, we have

1Bn+1 = 2M t
n P−1

n 1Mn+1.

Consequently,

E[(1Bn+1)
2
|Fn] = 4E[M t

n P−1
n 1Mn+11M t

n+1 P−1
n Mn|Fn] a.s.

= 4M t
n P−1

n E[1Mn+11M t
n+1|Fn]P−1

n Mn a.s.

= 4M t
n P−1

n Ln P−1
n Mn a.s.

However, we already saw from (4.3) that

Ln =


k∈Gn


P(Xk) Q(Xk)

Q(Xk) R(Xk)


⊗


X2

k Xk
Xk 1


.

Moreover,

1Pn = Pn − Pn−1 =


k∈Gn

(1 + Xk)
2 I2 ⊗


X2

k Xk
Xk 1


.

For α = max(σ 2
a , σ

2
c )+ max(σ 2

b , σ
2
d )+ max(|ρab|, |ρcd |), denote

∆n =


α(1 + X2

n)− P(Xn) −Q(Xn)

−Q(Xn) α(1 + X2
n)− R(Xn)


where P(Xn), Q(Xn) and R(Xn) are given by (4.4). It is not hard to see that

α1Pn − Ln =


k∈Gn

∆k ⊗


X2

k Xk
Xk 1


and that ∆n is positive definite which immediately implies that Ln ≤ α1Pn . Moreover, we can
use Lemma B.1 of [6] to say that

P−1
n−11Pn P−1

n−1 ≤ P−1
n−1 − P−1

n .
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Hence

E[(1Bn+1)
2
|Fn] = 4M t

n P−1
n Ln P−1

n Mn a.s.

≤ 4αM t
n P−1

n 1Pn P−1
n Mn a.s.

≤ 4αM t
n(P

−1
n−1 − P−1

n )Mn a.s.

leading to ⟨B⟩n ≤ 4αAn . Therefore it follows from the strong law of large numbers for
martingales that Bn = o(An). Hence, we deduce from decomposition (9.1) that

Vn+1 + An = o(An)+ O(n) a.s.

leading to Vn+1 = O(n) and An = O(n) a.s. which implies that Bn = o(n) a.s. Finally we clearly
obtain convergence (9.4) from the main decomposition (9.1) together with (9.2) and (9.3), which
completes the proof of Lemma 9.1. �

Lemma 9.2. Assume that (H.1)–(H.3) are satisfied. For all δ > 1/2, we have

∥Mn∥
2

= o(|Tn|nδ) a.s.

Proof. Let us recall that

Mn =


k∈Tn−1


Xk V2k

V2k
Xk V2k+1

V2k+1

 .
Denote

Tn =


k∈Tn−1

Xk V2k and Un =


k∈Tn−1

V2k .

On the one hand, Tn can be rewritten as

Tn =

n
k=1


|Gk−1| fk where fn =

1
|Gn−1|


k∈Gn−1

Xk V2k .

We already saw in Section 3 that, for all n ≥ 0 and for all k ∈ Gn ,

E[V2k |Fn] = 0 and E[V 2
2k |Fn] = σ 2

a X2
k + σ 2

c = P(Xk) a.s.

In addition, for all k ∈ Gn, E[V 4
2k |Fn] = µ4

a X4
k + 6σ 2

a σ
2
c X2

k + µ4
c a.s. which implies that

E[V 4
2k |Fn] ≤ µ4

ac(1 + X2
k )

2 a.s. (9.6)

where µ4
ac = max(µ4

a, 3σ 2
a σ

2
c , µ

4
c). Consequently, E[ fn+1|Fn] = 0 a.s. In addition,

E[ f 4
n+1|Fn] =

1

|Gn|2


k∈Gn

X4
k E[V 4

2k |Fn] +
3

|Gn|2


k∈Gn


l∈Gn
l≠k

X2
k X2

l E[V 2
2k |Fn]E[V 2

2l |Fn],

which implies from (9.6) together with the Cauchy–Schwarz inequality that

E[ f 4
n+1|Fn] ≤

µ4
ac

|Gn|2


k∈Gn

X4
k (1 + X2

k )
2
+ 3 max(σ 2

a , σ
2
c )

2


1

|Gn|


k∈Gn

X2
k (1 + X2

k )

2

.
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Therefore, we infer from Lemma 5.1 that

sup
n≥0

E[ f 4
n+1|Fn] < ∞ a.s.

Hence, we obtain from Wei’s lemma given in [36, p. 1672], together with Lemma A.2 of [6], that
for all δ > 1/2,

T 2
n = o(|Tn−1|n

δ) a.s.

On the other hand, Un can be rewritten as

Un =

n
k=1


|Gk−1|gk where gn =

1
|Gn−1|


k∈Gn−1

V2k .

Via the same calculation as before, E[gn+1|Fn] = 0 a.s. and

E[g4
n+1|Fn] ≤

µ4
bd

|Gn|2


k∈Gn

(1 + X2
k )

2
+ 3 max(σ 2

b , σ
2
d )

2


1

|Gn|


k∈Gn

(1 + X2
k )

2

where µ4
bd = max(µ4

b, 3σ 2
b σ

2
d , µ

4
d). Hence, we deduce once again from Lemma 5.1 and Wei’s

Lemma, together with Lemma A.2 of [6], that for all δ > 1/2,

U 2
n = o(|Tn−1|n

δ) a.s.

In the same way, we obtain the same result for the two last components of Mn , which completes
the proof of Lemma 9.2. �

9.1. Proof of Theorem 5.5

We recall that Vn = (θn − θ)tΣn−1 P−1
n−1Σn−1(θn − θ) which implies that

∥θn − θ∥2
≤

Vn

λmin(Σn−1 P−1
n−1Σn−1)

where λmin(A) stands for the smallest eigenvalue of A. On the one hand, it follows from (9.4)
that Vn = O(n) a.s. On the other hand, we deduce from Lemma 5.1 that

lim
n→∞

Σn

|Tn|
= I2 ⊗ C = Γ a.s. (9.7)

where C is the positive definite matrix given by (5.3). Therefore, we obtain from (9.5) and (9.7)
that

lim
n→∞

λmin(Σn−1 P−1
n−1Σn−1)

|Tn−1|
= λmin(C(C + D)−1C) > 0 a.s.

Consequently, we find that

∥θn − θ∥2
= O


n

|Tn−1|


a.s.

We are now in position to prove the quadratic strong law (5.4). First of all, a direct application of
Lemma 9.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, we obtain from (9.4) that

lim
n→∞

An

n
=

1
2

tr((I2 ⊗ (C + D))−1/2L(I2 ⊗ (C + D))−1/2) a.s. (9.8)
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Let us rewrite An as

An =

n
k=1

M t
k


P−1

k−1 − P−1
k


Mk =

n
k=1

M t
k P−1/2

k−1 Ak P−1/2
k−1 Mk,

where Ak = I4 − P1/2
k−1 P−1

k P1/2
k−1. We already saw from (9.5) that

lim
n→∞

Pn

|Tn|
= I2 ⊗ (C + D) a.s. (9.9)

which ensures that

lim
n→∞

An =
1
2

I4 a.s.

In addition, we deduce from (9.4) that An = O(n) a.s. which implies that

An

n
=


1

2n

n
k=1

M t
k P−1

k−1 Mk


+ o(1) a.s. (9.10)

Moreover, we also have from (9.7) and (9.9) that

1
n

n
k=1

M t
k P−1

k−1 Mk =
1
n

n
k=1

(θk − θ)tΣk−1 P−1
k−1Σk−1(θk − θ)

=
1
n

n
k=1

|Tk−1|(θk − θ)t
Σk−1

|Tk−1|
|Tk−1|P

−1
k−1

Σk−1

|Tk−1|
(θk − θ)

=
1
n

n
k=1

|Tk−1|(θk − θ)tΓ (I2 ⊗ (C + D)−1)Γ (θk − θ)+ o(1) a.s.

(9.11)

Therefore, (9.8) together with (9.10) and (9.11) leads to (5.4). �

9.2. Proof of Theorem 5.6

We only prove (5.5) inasmuch as the proof of (5.6) follows exactly the same lines. Relation
(3.8) immediately leads to

Qn−1(ηn − ηn) =

n−1
l=0


k∈Gl

(V 2
2k − V 2

2k)ψk

=

n−1
l=0


k∈Gl


(V2k − V2k)

2
+ 2(V2k − V2k)V2k


ψk . (9.12)

Moreover, we clearly have from Section 3 that, for all n ≥ 0 and for all k ∈ Gn

V2k − V2k = −

an − acn − c

t

Φk,

which implies that

(V2k − V2k)
2

≤


(an − a)2 + (cn − c)2


∥Φk∥

2
=


(an − a)2 + (cn − c)2


(1 + X2

k ).
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In addition, since ∥ψk∥
2

= 1 + X4
k ≤ (1 + X2

k )
2, we haven−1

l=0


k∈Gl

(V2k − V2k)
2ψk

 ≤

n−1
l=0


(al − a)2 + (cl − c)2

 
k∈Gl

(1 + X2
k )

2.

However, it follows from Lemma 5.1 that
k∈Gl

(1 + X2
k )

2
= O(|Gl |) a.s.

and since Λ is positive definite, (5.4) leads to

n−1
l=0


(al − a)2 + (cl − c)2


|Gl | = O(n) a.s.

Hence, we find thatn−1
l=0


k∈Gl

(V2k − V2k)
2ψk

 = O(n) a.s. (9.13)

Let us now tackle

Pn =

n−1
l=0


k∈Gl

(V2k − V2k)V2kψk .

It is clear that

1Pn+1 = Pn+1 − Pn =


k∈Gn

(V2k − V2k)V2kψk = −


k∈Gn

V2kψkΦt
k

an − acn − c


.

Since, for all k ∈ Gn, E[V2k |Fn] = 0 a.s. and E[V 2
2k |Fn] = P(Xk) a.s., we have

E[1Pn+11P t
n+1|Fn] =


k∈Gn

P(Xk)ψkΦt
k

an − acn − c

an − acn − c

t

Φkψ
t
k a.s.

which allows to say that (Pn) is a square integrable martingale with increasing process ⟨P⟩n
given by

⟨P⟩n =

n−1
l=0

E[1Pl+11P t
l+1|Fn]

=

n−1
l=0


k∈Gl

P(Xk)ψkΦt
k

al − acl − c

al − acl − c

t

Φkψ
t
k a.s.

Consequently, if α = max(σ 2
a , σ

2
c ), we obtain that

∥⟨P⟩n∥ ≤ α

n−1
l=0


(al − a)2 + (cl − c)2

 
k∈Gl

(1 + X2
k )∥ψk∥

2
∥Φk∥

2 a.s.

≤ α

n−1
l=0


(al − a)2 + (cl − c)2

 
k∈Gl

(1 + X2
k )

4 a.s.
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leading, as previously via Lemma 5.1 and (5.4), to ∥⟨P⟩n∥ = O(n) a.s. The strong law of large
numbers for martingale given e.g. in Theorem 1.3.15 of [16] implies that

Pn = o(n) a.s. (9.14)

Then, we deduce from (9.12)–(9.14) that

∥Qn−1(ηn − ηn)∥ = O(n) a.s. (9.15)

Moreover, we obtain through Lemma 5.1 that

lim
n→∞

1
|Tn|

Qn =


s4 s2
s2 1


= A a.s. (9.16)

and we can prove, through tedious calculations, that this limiting matrix is positive definite.
Therefore, (9.15) immediately implies (5.5). We shall now proceed to the proof of (5.7). Denote

Rn =


k∈Tn−1

(Wk − Wk)
t J Wkψk,

where

Wk =

 V2kV2k+1


and J =


0 1
1 0


.

It follows from (3.9) that

Qn(νn − νn) =


k∈Tn−1

(V2k − V2k)(V2k+1 − V2k+1)ψk + Rn .

Furthermore, one can observe that (Rn) is a square integrable martingale with increasing process

⟨R⟩n =

n−1
l=0


k∈Gl

E[(Wk − Wk)
t J Wk W t

k J (Wk − Wk)ψkψ
t
k |Fl ] a.s.

=

n−1
l=0


k∈Gl

(Wk − Wk)
t JE[Wk W t

k |Fl ]J (Wk − Wk)ψkψ
t
k a.s.

=

n−1
l=0


k∈Gl

(Wk − Wk)
t J


P(Xk) Q(Xk)

Q(Xk) R(Xk)


J (Wk − Wk)ψkψ

t
k a.s.

=

n−1
l=0


k∈Gl

(Wk − Wk)
t


R(Xk) Q(Xk)

Q(Xk) P(Xk)


(Wk − Wk)ψkψ

t
k a.s.

Then, as previously, Lemma 5.1 and (5.4) lead to ∥⟨R⟩n∥ = O(n) a.s. which allows us to say
that Rn = o(n) a.s. Furthermore 

k∈Tn−1

(V2k − V2k)(V2k+1 − V2k+1)ψk


≤

1
2


k∈Tn−1


(V2k − V2k)

2
+ (V2k+1 − V2k+1)

2


∥ψk∥

≤
1
2

n−1
l=0

∥θl − θ∥2

k∈Gl

∥Φk∥
2
∥ψk∥,
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which implies, thanks to Lemma 5.1 and (5.4), that 
k∈Tn−1

(V2k − V2k)(V2k+1 − V2k+1)ψk

 = O(n) a.s.

Finally, we infer from (9.16) that

∥νn − νn∥ = O


n

|Tn−1|


a.s.

It remains to prove the a.s. convergence of ηn, ζn and νn to η, ζ and ν, respectively which would
immediately implies the a.s. convergence of our estimates through (5.5)–(5.7). Denote

Nn = Qn−1(ηn − η) =


k∈Tn−1

v2kψk (9.17)

where v2n = V 2
2n − ηtψn . One can observe that (Nn) is a square integrable martingale with

increasing process ⟨N ⟩n given by

⟨N ⟩n =

n−1
l=0


k∈Gl

E[v2
2k |Fl ]ψkψ

t
k a.s.

Hence, if γ = max(µ4
a − σ 4

a , 2σ 2
a σ

2
c , µ

4
c − σ 4

c ), we obtain that

∥⟨N ⟩n∥ ≤

n−1
l=0


k∈Gl

γ (1 + X2
k )

2ψkψ
t
k

 a.s.

≤ γ


k∈Tn−1

(1 + X2
k )

2
∥ψk∥

2
= γ


k∈Tn−1

(1 + X2
k )

4 a.s.

which leads, via Lemma 5.1, to ∥⟨N ⟩n∥ = O(|Tn−1|) a.s. Consequently,

∥Nn∥
2

= O(n|Tn−1|) a.s.

Then, we deduce from (9.16) and (9.17) that ηn converges a.s. to η with the a.s. rate of
convergence given in Remark 5.7. The proof concerning the a.s. convergence of ζn to ζ and
the second rate of convergence in Remark 5.7 is exactly the same. Hereafter, denote

Hn = Qn−1(νn − ν) =


k∈Tn−1

w2kψk (9.18)

where w2n = V2n V2n+1 −νtψn . Once again, the sequence (Hn) is a square integrable martingale
with increasing process

⟨H⟩n =

n−1
l=0


k∈Gl

E[w2
2k |Fl ]ψkψ

t
k a.s.

Moreover, if α = max(ν2
ab, ν

2
cd , (σ

2
a + σ 2

c )(σ
2
b + σ 2

d )), we find that

∥⟨H⟩n∥ ≤

n−1
l=0


k∈Gl

α(1 + X2
k )

2ψkψ
t
k

 a.s.

≤ α


k∈Tn−1

(1 + X2
k )

2
∥ψk∥

2
= α


k∈Tn−1

(1 + X2
k )

4 a.s.
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which allows us to say, as previously, that

∥Hn∥
2

= O(n|Tn−1|) and ∥νn − ν∥2
= O


n

|Tn−1|


a.s.

It clearly proves the a.s. convergence of νn to ν with the last a.s. rate of convergence given in
Remark 5.7, which completes the proof of Theorem 5.6. �

10. Proofs of the asymptotic normalities

The key point of the proof of the asymptotic normality of our estimators is the central limit
theorem for triangular array of vector martingale given e.g. in Theorem 2.1.9 of [16]. With this
aim in mind, we will change the filtration considering, instead of the generation wise filtration
(Fn), the sister-pair wise filtration (Gn) given by

Gn = σ {X1, (X2k, X2k+1), 1 ≤ k ≤ n} .

10.1. Proof of convergence (5.8)

We will consider the triangular array of vector martingale (M (n)
k ) defined as

M (n)
k =

1
√

|Tn|

k
l=1

Dl where Dl =


Xl V2l
V2l

Xl V2l+1
V2l+1

 . (10.1)

It is obvious that

M (n)


is a square integrable vector valued martingale with respect to the

filtration (Gk). Moreover, we can observe that

M (n)
tn =

1
√

|Tn|

tn
l=1

Dl =
1

√
|Tn|

Mn+1 (10.2)

where tn = |Tn| = 2n+1
− 1. In addition, the increasing process of this square integrable

martingale is given by

⟨M (n)
⟩k =

1
|Tn|

k
l=1

E[Dl Dt
l |Gl−1]

=
1

|Tn|

k
l=1


P(Xl) Q(Xl)

Q(Xl) R(Xl)


⊗


X2

l Xl
Xl 1


a.s.

Then, (5.2) leads to

lim
n→∞

⟨M (n)
⟩tn = L a.s.

We will now establish Lindeberg’s condition thanks to Lyapunov’s condition. Let

φn =

tn
k=1

E

∥M (n)

k − M (n)
k−1∥

4
|Gk−1


.
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It follows from (10.1) that

φn =
1

|Tn|2

tn
k=1

E

(1 + X2

k )
2(V 2

2k + V 2
2k+1)

2
|Gk−1


≤

2

|Tn|2

tn
k=1

E

(1 + X2

k )
2(V 4

2k + V 4
2k+1)|Gk−1


.

Since we already saw in Section 9 that

E

V 4

2k |Fn


≤ µ4

ac(1 + X2
k )

2 and E[V 4
2k+1|Fn] ≤ µ4

bc(1 + X2
k )

2 a.s.

where µ4
ac = max(µ4

a, 3σ 2
a σ

2
c , µ

4
c) and µ4

bd = max(µ4
b, 3σ 2

b σ
2
d , µ

4
d), we have that

φn ≤
2(µ4

ac + µ4
bd)

|Tn|2

tn
k=1

(1 + X2
k )

4 a.s.

leading, via Lemma 5.1, to the a.s. convergence of φn to 0. Consequently, Lyapunov’s condition
is satisfied and Theorem 2.1.9 of [16] together with (10.2) imply that

1
|Tn−1|

Mn
L

−→ N (0, L).

Moreover, we easily obtain from Lemma 5.1 that

lim
n→∞

Σn

|Tn|
= I2 ⊗ C = Γ a.s. (10.3)

where C is the positive definite matrix given by (5.3). Finally, we deduce from (4.1) together
with (10.3) and Slutsky’s lemma that

|Tn−1|(θn − θ)
L

−→ N (0,Γ−1LΓ−1).

10.2. Proof of convergences (5.9) and (5.11)

The proof of convergences (5.9) and (5.11) is left to the reader as it follows essentially the
same lines as the one of convergence (5.8).
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