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Abstract

We investigate the almost sure asymptotic properties of vector martingale transforms.
Assuming some appropriate regularity conditions both on the increasing process and
on the moments of the martingale, we prove that normalized moments of any even
order converge in the almost sure central limit theorem for martingales. A conjecture
about almost sure upper bounds under wider hypotheses is formulated. The theoretical
results are supported by examples borrowed from statistical applications, including
linear autoregressive models and branching processes with immigration, for which new
asymptotic properties are established on estimation and prediction errors.
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1. Introduction

Let (Xn) be a sequence of real, independent, identically distributed random variables with
E[Xn] = 0 and E[X2

n] = σ 2, and let

Sn =
n∑

k=1

Xk.

It follows from the ordinary central limit theorem that

Sn√
n

L−→ N (0, σ 2),

which implies that, for any bounded continuous real function h,

lim
n→∞ E

[
h

(
Sn√
n

)]
=

∫
R

h(x) dG(x),
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where G stands for the Gaussian measure N (0, σ 2). Moreover, by the celebrated almost sure
central limit theorem (ASCLT), the empirical measure

Gn = 1

log n

n∑
k=1

1

k
δ{Sk/

√
k},

where δ denotes the Dirac delta function, satisfies

Gn ⇒ G almost surely (a.s.).

In other words, for any bounded continuous real function h,

lim
n→∞

1

log n

n∑
k=1

1

k
h

(
Sk√
k

)
=

∫
R

h(x) dG(x) a.s.

The ASCLT was simultaneously proved by Brosamler [3] and Schatte [16], and, in its present
form, by Lacey and Phillip [11]. In contrast with the wide literature on the ASCLT for
independent random variables, very few references are available on the ASCLT for martingales,
apart from the recent work of Bercu and Fort [1], [2] and the important contributions of Chaâbane
and Maâouia [4], Chaâbane [5], Chaâbane and Touati [6], and Lifshits [14], [15]. The ASCLT
for scalar martingales is as follows. Let (εn) be a martingale difference sequence adapted to a
filtration F = (Fn) with E[ε2

n+1 | Fn] = σ 2 a.s. Let (�n) be a sequence of random variables
adapted to F, and denote by (Mn) the real martingale transform

Mn =
n∑

k=1

�k−1εk.

We also need to introduce the explosion coefficient fn associated with (�n):

fn = �2
n

sn
, where sn =

n∑
k=0

�2
k.

As soon as (fn) goes to 0 a.s. and, under a reasonable assumption on the conditional moments
of (εn), the ASCLT for martingales asserts that the empirical measure

Gn = 1

log sn

n∑
k=1

fkδ{Mk/
√

sk−1} ⇒ G a.s. (1.1)

In other words, for any bounded continuous real function h,

lim
n→∞

1

log sn

n∑
k=1

fkh

(
Mk√
sk−1

)
=

∫
R

h(x) dG(x) a.s. (1.2)

It is quite natural to overcome the case of unbounded functions h. To be more precise, we
might wonder if convergence (1.2) remains true for unbounded functions h. It has recently been
shown in [1] and [2] that, whenever (εn) has a finite conditional moment of order greater than
2p, then convergence (1.2) still holds for any continuous real function h such that |h(x)| ≤ x2p.
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Theorem 1.1. (Convergence of moments in the scalar case.) Assume that (εn) is a martingale
difference sequence such that E[ε2

n+1 | Fn] = σ 2 a.s. and satisfying, for some integer p ≥ 1
and some real number a > 2p,

sup
n≥0

E[|εn+1|a | Fn] < ∞ a.s.

If the explosion coefficient (fn) tends to 0 a.s. then

lim
n→∞

1

log sn

n∑
k=1

fk

(
M2

k

sk−1

)p

= σ 2p(2p)!
2pp! a.s. (1.3)

Limit (1.3) is exactly the moment of order 2p of the Gaussian distribution N (0, σ 2). The
purpose of the present paper is to extend the results of [1] to vector martingale transforms,
which is strongly needed in various applications arising in statistics and signal processing.

Let (Mn) be a square-integrable vector martingale with values in R
d , adapted to a filtration

F = (Fn). Its increasing process is the sequence (〈M〉n) of symmetric, positive, semidefinite
square matrices of order d given by

〈M〉n =
n∑

k=1

E[(Mk − Mk−1)(Mk − Mk−1)

 | Fk−1].

A first version of the ASCLT for discrete vector martingales was proposed in [5] and [7],
under fairly restrictive assumptions on the increasing process (〈M〉n). Hereafter, our goal is to
establish the convergence of moments of even order in the ASCLT for (Mn) under suitable
assumptions on the behaviour of (〈M〉n). We shall work in the general setting of vector
martingale transforms (Mn), which can be written as

Mn = M0 +
n∑

k=1

�k−1εk,

where M0 can be taken arbitrary and (�n) denotes a sequence of random vectors of dimension
d, adapted to F. We also introduce

Sn =
n∑

k=0

�k�


k + S,

where S is a fixed deterministic matrix, symmetric and positive definite. We can obviously
see that if E[ε2

n+1 | Fn] = σ 2 a.s. then the increasing process of (Mn) takes the form 〈M〉n =
σ 2Sn−1. If dn = det(Sn), the explosion coefficient associated with (�n) is now given by

fn = �

n S−1

n �n = dn − dn−1

dn

.

After this short survey, the paper will be organized as follows. The main theoretical
result for vector martingale transforms is given in Section 2, at the end of which a quite
plausible interesting conjecture is formulated, involving minimal assumptions. In Section 3 we
propose some statistical applications to estimation and prediction errors for linear autoregressive
processes and for branching processes with immigration.
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2. On the convergence of moments

As mentioned above, our main result is given in Theorem 2.1 and it clearly extends Theo-
rem 1.1 to the vector case. Note that, in mathematics, the difficulty of the problem is almost
always a strictly increasing function of the dimension of some underlying space: it is also the
case here.

Theorem 2.1. Let (εn) be a martingale difference sequence satisfying the homogeneity con-
dition E[ε2

n+1 | Fn] = σ 2 a.s. and such that, for some integer p ≥ 1 and some real number
a > 2p,

sup
n≥0

E[|εn+1|a | Fn] < ∞ a.s. (2.1)

In addition, assume that the explosion coefficient (fn) tends to 0 a.s., and that there exists
a positive random sequence (αn) increasing a.s. to ∞ and an invertible symmetric matrix L

such that

lim
n→∞

1

αn

Sn = L a.s. (2.2)

Then, the following limits hold a.s.:

lim
n→∞

1

log dn

n∑
k=1

fk(M


k S−1

k−1Mk)
p = �(p) = dσ 2p

p−1∏
j=1

(d + 2j), (2.3)

lim
n→∞

1

log dn

n∑
k=1

((M

k S−1

k−1Mk)
p − (M


k S−1
k Mk)

p) = λ(p) = p

d
�(p). (2.4)

Remark 2.1. The limit �(p) corresponds exactly to the moment of order 2p of the norm of
a Gaussian vector N (0, σ 2Id), where Id is the identity matrix of order d. Consequently,
Theorem 2.1 indeed shows the convergence of moments of order 2p in the ASCLT for vector
martingales. Here, the deterministic normalisation given in [5] has been replaced by the natural
random normalisation associated with the increasing process.

Remark 2.2. The convergence hypothesis (2.2) clearly implies that fn → 0 a.s. if and only if
αn ∼ αn−1 a.s. As a matter of fact, we deduce from (2.2) that

lim
n→∞

dn

αd
n

= det(L) > 0 a.s.

2.1. Proof of the Theorem 2.1

For the sake of shortness, we shall define the following variables:

Vn = M

n S−1

n−1Mn, ϕn = α−1
n �


n L−1�n, vn = α−1
n−1M



n L−1Mn.

First of all, by using the symmetry of L, convergence (2.2) ensures that

fn = ϕn + o(ϕn) a.s., (2.5)

Vn = vn + o(vn) a.s. (2.6)

Indeed, we have the decomposition

fn = ϕn + α−1
n �


n L−1/2(αnL
1/2S−1

n L1/2 − Id)L−1/2�n.
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Moreover, the matrix Rn = αnL
1/2S−1

n L1/2 − Id is symmetric. Thus, if ρn stands for its
spectral radius, we clearly have

|α−1
n �


n L−1/2RnL
−1/2�n| ≤ ρnϕn.

Since ρn converges to 0 a.s., the last inequality leads to (2.5). The proof of (2.6) goes along the
same lines starting from the decomposition

Vn = vn + M

n (S−1

n−1 − α−1
n−1L

−1)Mn.

Hence, by (2.6), V
p
n = v

p
n + o(v

p
n ) a.s. In order to find the limit in (2.3), it is enough, by

Toeplitz’s lemma, to study the convergence

lim
n→∞

1

log dn

n∑
k=1

fkV
p
k = lim

n→∞
1

log dn

n∑
k=1

ϕkv
p
k .

As in the scalar case [1], Theorem 2.1 will be proved by induction with respect to p ≥ 1. The
first step consists in writing a recursive relation for M


n L−1Mn. Let

βn = tr(L−1/2SnL
−1/2), γn = βn − βn−1

βn

,

δn = M

n L−1�n

βn

, mn = β−1
n−1M



n L−1Mn.

According to the definition of (Mn), the following decomposition holds:

M

n+1L

−1Mn+1 = M

n L−1Mn + 2εn+1�



n L−1Mn + ε2

n+1�


n L−1�n,

so that
mn+1 = (1 − γn)mn + 2δnεn+1 + γnε

2
n+1. (2.7)

Theorem 2.1 relies essentially on the following lemma.

Lemma 2.1. Under the assumptions of Theorem 2.1, we have

lim
n→∞

1

log dn

n∑
k=1

γkm
p
k = �(p)

dp+1 a.s. (2.8)

In addition, if gn = M

n S−1

n−1�n, we also have

lim
n→∞

1

log dn

n∑
k=1

(1 − fk)g
2
km

p−1
k = λ(p)

pdp−1 a.s. (2.9)

Proof. Raising equality (2.7) to the power p implies that

m
p
n+1 =

p∑
k=0

k∑
�=0

2k−�Ck
pC�

kγ
�
n δk−�

n ((1 − γn)mn)
p−kεk+�

n+1. (2.10)

After some straightforward simplifications, we obtain the relation

m
p
n+1 + An(p) = m

p
1 + Bn+1(p) + Wn+1(p), (2.11)
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where

An(p) =
n∑

k=1

β
−p
k (β

p
k − β

p
k−1)m

p
k , Bn+1(p) =

2p−1∑
�=1

n∑
k=1

bk(�)ε
�
k+1,

Wn+1(p) =
n∑

k=1

γ
p
k ε

2p
k+1.

For 1 ≤ � ≤ p − 1, we have

bk(�) =
��/2∑
j=0

2�−2jC
�−j
p C

j
�−j γ

j
k δ

�−2j
k ((1 − γk)mk)

p−�+j ,

while, for p ≤ � ≤ 2p − 1,

bk(�) =
��/2∑

j=�−(p−1)

2�−2jC
�−j
p C

j
�−j γ

j
k δ

�−2j
k ((1 − γk)mk)

p−�+j

+ C
�−p
p 22p−� − δ

2p−�
k γ

�−p
k .

In order to extract useful information about An(p), it is necessary to study the asymptotic
behaviour of Wn+1(p), Bn+1(p), and m

p
n .

Case 1: p = 1. First of all, we can observe that

log βn ∼
n∑

k=1

γk a.s.

Hence, by Chow’s lemma [8, Theorem 1.3.18, p. 22] we obtain

lim
n→∞

1

log βn

Wn+1(1) = σ 2 a.s.

Now, the strong law of large numbers for martingales [8, Theorem 1.3.24, p. 26] together with
the inequality δ2

n ≤ γnmn implies that Bn+1(1) = o(An(1)) a.s. In addition, from relation
(2.30) of [18], it follows that mn+1 = o(log βn) a.s. Consequently, by (2.11),

lim
n→∞

1

log βn

An(1) = σ 2 a.s.

But the basic convergence assumption, (2.2), immediately implies that

lim
n→∞

βn

γn

= d a.s.,

so that log dn ∼ d log βn a.s. Hence,

lim
n→∞

1

log dn

An(1) = σ 2

d
a.s.,
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which establishes (2.8). As for the proof of (2.9), we can proceed in the same way, starting
from the decomposition

Vn+1 = M

n S−1

n Mn + 2εn+1�


n S−1

n Mn + ε2
n+1fn

= hn + 2εn+1gn + ε2
n+1fn.

Letting an(1) = M

n S−1

n−1Mn − M

n S−1

n Mn = Vn − hn, we can write

Vn+1 + An = V1 + Bn+1 + Wn+1, (2.12)

where

An =
n∑

k=1

ak(1), Bn+1 = 2
n∑

k=1

εk+1gk, Wn+1 =
n∑

k=1

ε2
k+1fk.

By Riccati’s formula,
g2

n = (1 − fn)an(1). (2.13)

Consequently, it follows from (2.13) together with the strong law of large numbers for martin-
gales that

Bn+1 = o(An) a.s.

On the other hand, mn = o(log βn) a.s. Hence, (2.6) gives the almost sure estimate Vn =
o(log dn). Furthermore, as (fn) tends to 0 a.s., we also have

log dn ∼
n∑

k=1

fk a.s.

Therefore, Chow’s lemma yields

lim
n→∞

1

log dn

Wn+1 = σ 2 a.s.

We conclude the proof of Lemma 2.1 for p = 1 by simply dividing both sides of (2.12) by
log dn and letting n tend to ∞.

Case 2: p ≥ 2. First of all, using Chow’s lemma once again, we can write

Wn+1(p) = o(log dn) a.s.

Also, we shall show that

Bn+1(p) = p

dp+1 �(p) log dn + o(log dn) + o(An(p)) a.s. (2.14)

Setting, for all 1 ≤ � ≤ 2p − 1,

ε�
n+1 = en+1(�) + E[ε�

n+1 | Fn] = en+1(�) + σn(�),

we can split
n∑

k=1

bk(�)ε
�
k+1 = Cn+1(�) + Dn(�)
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with

Cn+1(�) =
n∑

k=1

bk(�)ek+1(�) and Dn(�) =
n∑

k=1

bk(�)σk(�).

First, for any � such that 1 ≤ � ≤ p − 1, using the strong law of large numbers for martingales
once again and Equation (2.30) of [18], we have

Cn+1(�) = o(log dn) a.s.

Now suppose that 3 ≤ � ≤ p − 1. From Hölder’s inequality and the assumptions on the
moments of (εn), it follows that, for all 1 ≤ j ≤ 2p − 1, |σn(j)| is bounded, which implies
that

|Dn(�)| = O

( n∑
k=1

γ
�/2
k m

p−�/2
k

)
.

For even �, the induction assumption leads to Dn(�) = o(log dn) a.s. When � is odd, the
Cauchy–Schwarz inequality and the induction assumption yield

|Dn(�)| = O

(( n∑
k=1

γkm
p−1
k

)1/2( n∑
k=1

γ �
k m

p−�
k

)1/2)
= o(log dn) a.s.

Now suppose that p ≤ � ≤ 2p − 1. It is easy to obtain

|Dn(�)| = O

( n∑
k=1

γ
�/2
k m

p−�/2
k

)
a.s.

Now, from the induction assumption, we find that, for any integer � �= 2,

Dn(�) = o(log dn) a.s.

It remains to study Cn+1(�). By Chow’s lemma we have Cn+1(�) = o(νn(�)) a.s., where

νn(�) =
n∑

k=1

|bk(�)|2p/� = O

( n∑
k=1

γ
p
k m

(2p−�)p/�
k

)
.

For � > p, we apply Hölder’s inequality with exponents �/p and �/(� − p). Then, νn(�) =
o(log dn) a.s. In the particular case p = �, we find by the strong law of large numbers for
martingales that |Cn+1(�)|2 = O(τn(p) log τn(p)) a.s., after having set

τn(p) =
n∑

k=1

bk(p)2 = O

( n∑
k=1

γ
p
k m

p
k

)
.

Then we can deduce that Cn+1(�) = o(log dn) a.s., since by Equation (2.30) of [18], m
p
n =

o((log dn)
δ) a.s. for some 0 < δ < 1. As for the last term Dn(2), we need to study, for p ≥ 3,

the quantity

Dn(2)

log dn

= σ 2

log dn

n∑
k=1

1∑
j=0

22−2jC
2−j
p C

j
2−j γ

j
k δ

2−2j
k m

p−2+j
k

= 2p(p − 1)σ 2

log dn

n∑
k=1

δ2
km

p−2
k + pσ 2

log dn

n∑
k=1

γkm
p−1
k .
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It is easy to show that

g2
n = (�


n S−1
n−1Mn)

2 = d2δ2
n + o(γnmn) a.s.

Then the induction assumption and Toeplitz’s lemma imply that

lim
n→∞

1

log dn

n∑
k=1

δ2
km

p−2
k = lim

n→∞
1

d2 log dn

n∑
k=1

ak(1)m
p−2
k = λ(p − 1)

(p − 1)dp
a.s.

Consequently, we find that

lim
n→∞

Dn(2)

log dn

= �(p − 1)

(
2p(p − 1)σ 2

dp+1 + pσ 2

dp

)
= p

dp+1 �(p) a.s.

We can observe that this convergence is also valid for p = 2, which leads to (2.14). On the other
hand, still applying Equation (2.30) of [18], we derive the estimate m

p
n = o(log dn). Thus,

lim
n→∞

1

log dn

An(p) = p

dp+1 �(p) a.s.

Since
β

p
n − β

p
n−1

β
p
n

= γn

p−1∑
q=0

(
βn−1

βn

)p−1−q

∼ pγn a.s.,

we finally obtain

lim
n→∞

1

log dn

n∑
k=1

γkm
p
k = lim

n→∞
1

p log dn

An(p) = �(p)

dp+1 a.s.,

which completes the proof of convergence (2.8). As for the second part of Lemma 2.1, we
could proceed along similar lines via the equality

V
p
n+1 =

p∑
k=0

k∑
�=0

2k−�Ck
pC�

kf
�
n gk−�

n h
p−k
n εk+�

n+1

with gn = �

n S−1

n−1Mn and hn = M

n S−1

n Mn.

The proof of Theorem 2.1 is completed as relations (2.3) and (2.4) are clearly direct
consequences of (2.8) and (2.9), respectively. Indeed, since βn ∼ dαn a.s., we have, a.s.,

Vn ∼ dmn and fn ∼ dγn.

Therefore, convergence (2.8) immediately yields (2.3). Moreover, in the particular case p = 1,
the second convergence (2.9) is exactly (2.4). Now, for p ≥ 2, the elementary expansion

xp − yp = (x − y)xp−1
p−1∑
q=0

(
y

x

)p−1−q
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leads to

an(p) = (M

n S−1

n−1Mn)
p − (M


n S−1
n Mn)

p

= an(1)V
p−1
n

p−1∑
q=0

(
Vn − an(1)

Vn

)p−1−q

. (2.15)

Riccati’s formula implies that

an(1) = (1 − fn)M


n S−1

n−1�n�


n S−1

n−1Mn

≤ (1 − fn) tr(S−1/2
n−1 �n�



n S

−1/2
n−1 )Vn

≤ fnVn.

As (fn) tends to 0 a.s., we clearly have an(1) = o(Vn) a.s. and, by (2.15),

an(p) ∼ pan(1)V
p−1
n a.s.

Finally, we obtain

lim
n→∞

1

log dn

n∑
k=1

ak(p) = lim
n→∞

pdp−1

log dn

n∑
k=1

ak(1)m
p−1
k = λ(p) a.s.

In most statistical applications encountered so far, the convergence assumption (2.2) is
satisfied. However, this technical hypothesis somehow circumvents the vector problem, which
in its full generality is not yet solved. Indeed, (2.2) entails that all eigenvalues of the matrix
Sn grow to ∞ at the same speed αn. Thus, our method of proof has some features in common
with the scalar case. Hopefully, we should be able to establish the following result, stated for
the moment as a conjecture, without assuming (2.2).

Conjecture 2.1. Let (εn) be a martingale difference sequence satisfying the condition that
E[ε2

n+1 | Fn] = σ 2 a.s. and assumption (2.1) introduced in Theorem 2.1 for some integer
p ≥ 1. Then

n∑
k=1

fk(M


k S−1

k−1Mk)
p = O(log dn) a.s.,

n∑
k=1

((M

k S−1

k−1Mk)
p − (M


k S−1
k Mk)

p) = O(log dn) a.s.

3. Applications

3.1. Linear regression models

Theorem 2.1 is the keystone to understanding the asymptotic behaviour of cumulative
prediction and estimation errors associated to the stochastic regression process given, for all
n ≥ 1, by

Xn+1 = θ
�n + εn+1, (3.1)

where θ ∈ R
d is the unknown parameter. The random variables Xn, �n, and εn are the scalar

observation, the regression vector, and the scalar driven noise, respectively. We propose here
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two applications. The first one concerns stable autoregressive processes while the second one
deals with branching processes with immigration.

For a reasonable sequence (θ̂n) of estimators of θ , we shall investigate the asymptotic
performance of θ̂


n �n as a predictor of Xn+1. More precisely, we shall focus on the prediction
error, Xn+1 − θ̂


n �n, and on the estimation error, θ̂n − θ . In fact, it is more relevant and
efficient [10] to consider the cumulative prediction and estimation errors defined, for p ≥ 1, as

Cn(p) =
n−1∑
k=0

(Xk+1 − θ̂

k �k)

2p

and

Gn(p) =
n∑

k=1

kp−1‖θ̂k − θ‖2p.

In the scalar case, d = 1, under suitable moment conditions, asymptotic estimates on (Cn(p))

and (Gn(p)) were established in [1] by means of the standard least-squares estimator

θ̂n = S−1
n−1

n∑
k=1

�k−1Xk. (3.2)

It turns out that Theorem 2.1 allows us to improve the results of [1] and [2]. To the best of the
authors’knowledge, only partial results in the particular case p = 1 have been obtained, namely
in [8] and [18], where the authors derived the asymptotics of (Cn(p)) and (Gn(p)). For the
proofs of the strong consistency of the least-squares estimator for general linear autoregressive
processes, we refer the reader to [9], [12], and [17]. Also, various results on the asymptotic
behaviour of the empirical estimator of the covariance associated with process (3.1) can be
found in [9], [12], [13], and [17].

One might wonder how the convergence of the moments in the ASCLT helps us to deduce
the almost sure asymptotic properties of the sequences (Cn(p)) and (Gn(p)). It follows, from
(3.1) and (3.2), that

θ̂n − θ = S−1
n−1Mn, (3.3)

where

Mn = M0 +
n∑

k=1

�k−1εk

with M0 = −Sθ . If

πn = (θ − θ̂n)

�n = Xn+1 − θ̂


n �n − εn+1, (3.4)

relations (3.3) and (3.4) yield

π2
n = M


n S−1
n−1�n�



n S−1

n−1Mn.

It follows from Riccati’s formula given in [8, pp. 96 and 99] that

S−1
n−1 = S−1

n + (1 − fn)S
−1
n−1�n�



n S−1

n−1.

Hence, we can write

an(1) = M

n S−1

n−1Mn − M

n S−1

n Mn = (1 − fn)π
2
n . (3.5)
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It is often difficult to obtain asymptotic information on the explosion coefficient fn. Neverthe-
less, in our framework, it is possible to show that (fn) converges a.s. to 0. So, the asymptotic
behaviours of (Gn(p)) and (Cn(p)) can be deduced from the properties of (an(1))p, under
some suitable moment conditions on the driven noise (εn). By the same token, the moments of
order 2p can also be estimated.

Corollary 3.1. Under the assumptions of Theorem 2.1, we have, a.s.,

lim
n→∞

1

log dn

n∑
k=1

(ak(1))p =
{

0 if p > 1,

σ 2 if p = 1.
(3.6)

Proof. In the particular case p = 1, convergence (3.6) is exactly given by (2.4). Now
suppose that p > 1. Since

an(1) ≤ fnVn

and fn → 0 a.s., we obtain, once again by Lemma 2.1 and Kronecker’s lemma,

0 ≤ lim
n→∞

1

log dn

n∑
k=1

(ak(1))p ≤ lim
n→∞

1

log dn

n∑
k=1

(fkVk)
p = 0 a.s.

3.2. Moment estimation, prediction, and estimation errors

Assume that (εn) is a martingale difference sequence such that E[ε2
n+1 | Fn] = σ 2 a.s. for

all n ≥ 1, and let

�n = 1

n

n∑
k=1

ε2
k .

If (εn) has a conditional moment of order a > 2 then the strong law of large numbers for
martingales implies the almost sure convergence of �n to σ 2. Under the assumptions of
Theorem 2.1 with p = 1, convergence (3.6) leads to the strong consistency of the estimator
of σ 2,

�n = 1

n

n−1∑
k=0

(Xk+1 − θ̂

k �k)

2,

since
lim

n→∞
n

log dn

(�n − �n) = σ 2 a.s. (3.7)

Hence, a natural estimator of higher moments of (εn) can be proposed. For any integer p ≥ 1, let

�n(2q) = 1

n

n−1∑
k=0

(Xk+1 − θ̂

k �k)

2p.

We can readily observe that n�n(2p) = Cn(p). For any integer p ≥ 1, we let

�n(2p) = 1

n

n∑
k=1

ε
2p
k .

Almost-sure asymptotic properties of �n(2p) are given in the next corollary.
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Corollary 3.2. Assume that (εn) satisfies (2.1) with p ≥ 1. In addition, suppose that, for some
integer 1 ≤ q ≤ p, E[ε2q

n+1 | Fn] = σ(2q) a.s. Then, �n(2q) is a strongly consistent estimator
of σ(2q) with

(�n(2q) − �n(2q))2 = O

(
log n

n

)
a.s. (3.8)

Proof. We have already shown via (3.7) that Corollary 3.2 holds for q = 1. Now assume
that q ≥ 2. By expanding the expression of �n(2q), equality (3.4) leads to

n(�n(2q) − �n(2q)) =
n−1∑
k=0

π
2q
k +

2q−1∑
�=1

C�
q

n−1∑
k=0

π
2q−�
k ε�

k+1.

Using the almost sure convergence of fn to 0 and Corollary 3.1, we deduce from (3.5) that

n∑
k=0

π
2q
k = o(log dn) a.s.

For all � ∈ {1, . . . , 2q − 1}, let us write

n−1∑
k=0

π
2q−�
k ε�

k+1 = Pn(�) + Qn(�)

with

Pn(�) =
n−1∑
k=0

π
2q−�
k σk(�) and Qn(�) =

n−1∑
k=0

π
2q−�
k ek+1(�),

where σn(�) = E[ε�
n+1 | Fn] and en+1(�) = ε�

n+1−σn(�). First, since the conditional moments
σn(�) are a.s. bounded, we have

|Pn(�)| = O

(n−1∑
k=0

π
2q−�
k

)
= O(log dn) a.s.

Moreover, from the estimate

|Qn(�)|2 = O(n log dn) a.s.

we obtain
n2(�n(2q) − �n(2q))2 = O(n log dn) a.s.,

which concludes the proof of Corollary 3.2.

Remark 3.1. It is now possible to deduce from Corollary 3.2 the asymptotic behaviour of
(Cn(q)). Under the assumptions of Corollary 3.2, we have

lim
n→∞

1

n
Cn(q) = σ(2q) a.s.

Moreover, since the conditional moment of order a > 2p of (εn) is a.s. finite, Chow’s lemma
leads to ∣∣∣∣1

n

n∑
k=1

ε
2q
k − σ(2q)

∣∣∣∣ = o(nc−1) a.s. (3.9)
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for all c such that 2pa−1 < c < 1. Hence, it follows from (3.8) and (3.9) that, if log dn = o(nc),∣∣∣∣1

n
Cn(q) − σ(2q)

∣∣∣∣
2

= o(nc−1) a.s.

Before stating the result on the cumulative estimation error (Gn(p)), we need another
corollary of Theorem 2.1.

Corollary 3.3. Under the assumptions of Theorem 2.1, we have

lim
n→∞

1

log dn

n∑
k=1

fk((θ̂k − θ)
Sk(θ̂k − θ))p = �(p) a.s. (3.10)

In addition, assume that there exists a positive definite, symmetric matrix L such that

lim
n→+∞

1

n
Sn = L a.s. (3.11)

Then, we have

lim
n→∞

1

log n

n∑
k=1

kp−1((θ̂k − θ)
L(θ̂k − θ))p = �(p) a.s. (3.12)

Remark 3.2. Since L is positive definite, (3.12) immediately yields

Gn(p) = O(log n) a.s.

Proof of Corollary 3.3. From the definitions of Sn and θ̂n, it is easy to see that

(θ̂n − θ)
Sn(θ̂n − θ) = Vn + g2
n.

Hence, it follows from convergence (2.3) and from the convergence of the explosion coefficient
(fn) to 0, together with Kronecker’s lemma, that, a.s.,

lim
n→∞

1

log dn

n∑
k=1

fk((θ̂k − θ)
Sk(θ̂k − θ))p = lim
n→∞

1

log dn

n∑
k=1

fkV
p
k = �(p).

Then, convergence (3.10) is a straightforward consequence of Theorem 2.1. In addition, it is
not difficult to see that

lim
n→∞

1

log n

n∑
k=1

kp−1((θ̂k − θ)
L(θ̂k − θ))p = lim
n→∞

dp+1

log n

n∑
k=1

m
p
k

βk

a.s.

The classical Abel transform gives the decomposition

n∑
k=1

γkm
p
k = m

p
n

βn

(�n − d(n − 1)) − m
p
1

β0
�0 + rn + d

n−1∑
k=1

m
p
k

βk

,

where

�n =
n∑

k=1

βkγk =
n∑

k=1

�

k L−1�k ∼ βn



Convergence of moments in the ASCLT for vector martingales 165

and

rn =
n−1∑
k=1

(
m

p
k

βk

− m
p
k+1

βk+1

)
(�k − kd).

Moreover,
m

p
n

βn

(�n − d(n − 1)) − m
p
1

β0
�0 = o(log dn) a.s.

So, it only remains to prove that rn = o(log n) a.s. Indeed, Lemma 2.1 yields

lim
n→∞

1

log n

n∑
k=1

m
p
k

βk

= 1

d
lim

n→∞
1

log n

n∑
k=1

γkm
p
k = �(p)

dp+1 a.s.

Then, splitting rn into two terms, i.e.

rn =
n−1∑
k=1

�k − kd

βk

(m
p
k − m

p
k+1) +

n−1∑
k=1

�k − kd

βk

γk+1m
p
k+1,

and using the proof of Theorem 2.1 together with (2.10), we obtain

lim
n→∞

1

log n

n−1∑
k=1

�k − kd

βk

(β
−p
k (β

p
k − β

p
k−1)m

p
k − wk+1 − bk+1) = 0 a.s.

The second term is a.s. o(log n). This is a mere consequence of Lemma 2.1 and of the almost
sure convergence of (�n − nd)/βn to 0. Finally, we have

lim
n→∞

1

log n

n∑
k=1

kp−1((θ̂k − θ)
L(θ̂k − θ))p = �(p) a.s.

We shall now apply these asymptotic properties to autoregressive processes and to branching
processes with immigration, which are both particular cases of the general stochastic regression
process (3.1).

3.3. The linear autoregressive process

The linear autoregressive process is defined, for all n ≥ 1, by

Xn+1 =
d∑

k=1

θkXn−k+1 + εn+1.

Let C denote the companion matrix associated with (Xn):

C =

⎛
⎜⎜⎜⎜⎜⎝

θ1 θ2 . . . θd−1 θd

1 0 . . . . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

We shall focus our attention on the stable case, which means that we assume that ρ(C) < 1,
where ρ(C) is the spectral radius of the matrix C. In addition, we also assume that (εn) is a
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martingale difference sequence which satisfies (2.1) with p ≥ 1. If E[ε2
n+1 | Fn] = σ 2 a.s.

and

� = σ 2

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . 0

⎞
⎟⎟⎟⎠ ,

then convergence (3.11) holds with the limiting matrix L given by

L =
∞∑

k=0

Ck�(C
)k.

Moreover, we can immediately see that the matrix L is positive definite [8], [9]. Then we are
in position to state our following result.

Corollary 3.4. Assume that (εn) satisfies (2.1) with p ≥ 1. In addition, suppose that, for some
integer 1 ≤ q ≤ p, E[ε2q

n+1 | Fn] = σ(2q) a.s. Then, �n(2q) is a strongly consistent estimator
of σ(2q) with

(�n(2q) − �n(2q))2 = O

(
log n

n

)
a.s.

Moreover, we also have

lim
n→∞

1

log n

n∑
k=1

kp−1((θ̂k − θ)
L(θ̂k − θ))p = �(p) a.s.

3.4. A branching process with immigration

3.4.1. Estimation of means. Branching processes with immigration play an increasingly
important role in statistical physics, computational biology, and evolutionary theory. The
concept of immigration is related to the situation in which the population can be enriched by
exogenous contributions. The branching process with immigration (Xn) is given, for all n ≥ 1,
by the recursive relation

Xn+1 =
Xn∑
k=1

Yn,k + In+1, (3.13)

where (Yn,k) and (In) are two independent sequences of independent, identically distributed,
nonnegative, integer-valued random variables. The initial ancestor is X0 = 1. The distribution
of (Yn,k) is commonly called the offspring distribution, while that of (In) is known as the
immigration distribution. Define

E[Yn,k] = m, E[In] = λ,

var[Yn,k] = σ 2, var[In] = b2.

We are interested in the estimation of all the parameters m, λ, σ 2, and b2. Relation (3.13) may
be rewritten in the autoregressive form

Xn+1 = mXn + λ + εn+1, (3.14)

where εn+1 = Xn+1 − mXn − λ. Consequently, the branching process with immigration is
a particular case of the stochastic regression process given by (3.1) with �


n = (Xn, 1) and
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θ
 = (m, λ). However, we can observe that the situation is a little more tricky as (εn) is a
martingale difference sequence with unbounded conditional variance

E[ε2
n+1 | Fn] = σ 2Xn + b2.

To circumvent this technical difficulty, we introduce the following regression process:

Zn+1 = θ
�n + ξn+1,

where the random variables Zn+1, �n, and ξn+1 are given by

Zn+1 = c
−1/2
n Xn+1, �n = c

−1/2
n �n, ξn+1 = c

−1/2
n εn+1,

with
cn = Xn + 1.

Hereafter, (ξn) is a martingale difference sequence with bounded conditional variance
E[ξ2

n+1 | Fn] ≤ σ 2 + b2 a.s. We estimate the vector of means θ
 = (m, λ) by the conditional
least-squares estimator

θ̂n = S−1
n

n∑
k=1

c−1
k �kXk,

where

Sn = I2 +
n∑

k=0

c−1
k �k�



k .

In the subcritical case, m < 1, Wei and Winnicki [19] showed the almost sure convergence

lim
n→∞

1

n
Sn = L a.s.,

where the limiting matrix L is given by

L =

⎛
⎜⎜⎜⎝

E

[
X2

X + 1

]
E

[
X

X + 1

]

E

[
X

X + 1

]
E

[
1

X + 1

]
⎞
⎟⎟⎟⎠ .

The notation X stands for a random variable sharing the same distribution as the stationary
distribution of the Markov chain (Xn). Consequently, the matrix L is positive definite and the
following result holds.

Corollary 3.5. Assume that (εn) satisfies (2.1) with p ≥ 1. In addition, suppose that, for some
integer 1 ≤ q ≤ p, E[ε2q

n+1 | Fn] = σ(2q) a.s. Then, �n(2q) is a strongly consistent estimator
of σ(2q) with

(�n(2q) − �n(2q))2 = O

(
log n

n

)
a.s.

Moreover, we also have

lim
n→∞

1

log n

n∑
k=1

kp−1((θ̂k − θ)
L(θ̂k − θ))p = �(p) a.s.
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3.4.2. Estimation of variances. It follows from (3.14) that

ε2
n+1 = σ 2Xn + b2 + Vn+1,

where (Vn) is a martingale difference sequence satisfying

E[V 2
n+1 | Fn] = 2σ 4X2

n + Xn(τ
4 − 3σ 4 + 4b2σ 2) + ν4 − b4,

where
τ 4 = E[(Yn,k − m)4] and ν4 = E[(In − λ)4].

Consequently, we infer that

E[c−2
n V 2

n+1 | Fn] ≤ τ 4 + 4b2σ 2 + ν4.

As before, we estimate the vector of variances η
 = (σ 2, b2) by the conditional least-squares
estimator

η̂n = Q−1
n

n∑
k=1

c−2
k �kε̂

2
k+1 with ε̂n+1 = Xn+1 − θ̂n�n,

where

Qn = I2 +
n∑

k=0

c−2
k �k�



k .

In the subcritical case, m < 1, it was established in [20] that

lim
n→∞

1

n
Qn = �,

where � is the positive definite limiting matrix given by

� =

⎛
⎜⎜⎜⎝

E

[
X2

(X + 1)2

]
E

[
X

(X + 1)2

]

E

[
X

(X + 1)2

]
E

[
1

(X + 1)2

]
⎞
⎟⎟⎟⎠ .

Our last result is as follows.

Corollary 3.6. Assume that (εn) satisfies (2.1) for p ≥ 2. Then

lim
n→∞

1

log n

n∑
k=1

kp−1((η̂k − η)
�(η̂k − η))p = �(p) a.s.
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