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Abstract

For the Ornstein–Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of
the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding this
trichotomy, we investigate sharp large deviation principles for this estimator in the three situations. In the
explosive case, we exhibit a very unusual rate function with a shaped flat valley and an abrupt discontinuity
point at its minimum.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the Ornstein–Uhlenbeck process observed over the time interval [0, T ]

d X t = θ X t dt + d Bt (1.1)

where (Bt ) is a standard Brownian motion and the drift θ is an unknown real parameter. For the
sake of simplicity, we choose the initial state X0 = 0. The process is said to be stable if θ < 0,
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unstable if θ = 0, and explosive if θ > 0. The maximum likelihood estimator of θ is given by

θT =

 T
0 X t d X t T
0 X2

t dt
=

X2
T − T

2
 T

0 X2
t dt

. (1.2)

It is well-known (see e.g. [15, p. 234]) that in the stable, unstable, and explosive cases

lim
T →∞

θT = θ a.s.

However, the asymptotic normality is totally different in the three situations. As a matter of
fact, if θ < 0, the process (XT ) is positive recurrent and Brown and Hewitt [5] have shown the
asymptotic normality

√
T (θT − θ)

L
−→ N (0, −2θ).

Moreover, if θ = 0, the process (XT ) is null recurrent and it was proved by Feigin [10] that

T (θT − θ)
L
−→

 1
0 Bt d Bt 1
0 B2

t dt
=

B2
1 − 1

2
 1

0 B2
t dt

where (Bt ) is a standard Brownian motion. Furthermore, if θ > 0, the process (XT ) is transient
and we know from [9] (see also [13, p. 304]) that

exp(θT )(θT − θ)
L
−→ 2θ


Y
Z


where Y, Z are two independent Gaussian N (0, 1) random variables which implies that the
limiting ratio Y/Z has a Cauchy distribution. More recent contributions on parameter estimation
for explosive Ornstein–Uhlenbeck processes may be found in [8,12,16]. Notwithstanding this
trichotomy, our goal is to establish the large deviation properties for (θT ) in the stable, unstable,
and explosives cases. We refer the reader to the excellent book by Dembo and Zeitouni [7] on the
theory of large deviations. First of all, in the stable case, Florens-Landais and Pham [11] proved
the following large deviation principle (LDP) for (θT ).

Lemma 1.1. If θ < 0, then (θT ) satisfies an LDP with speed T and good rate function

I (c) =

−
(c − θ)2

4c
if c <

θ

3
,

2c − θ otherwise.
(1.3)

This result was extended by the following sharp large deviation principle (SLDP) for (θT )

established by Bercu and Rouault [4].

Theorem 1.2. Consider the Ornstein–Uhlenbeck process given by (1.1) where the drift parame-
ter θ < 0.

(a) For all c < θ , there exists a sequence (bc,k) such that, for any p > 0 and T large enough,

P(θT ≤ c) =
− exp(−T I (c) + H(c))

acσc
√

2πT


1 +

p
k=1

bc,k

T k +O


1
T p+1


(1.4)
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where

ac =
c2

− θ2

2c
and σ 2

c = −
1
2c

(1.5)

H(c) = −
1
2

log


(c + θ)(3c − θ)

4c2


(1.6)

while, for all θ < c < θ/3,

P(θT ≥ c) =
exp(−T I (c) + H(c))

acσc
√

2πT


1 +

p
k=1

bc,k

T k +O


1
T p+1


. (1.7)

(b) For all c > θ/3 with c ≠ 0, there exists a sequence (dc,k) such that, for any p > 0 and T
large enough,

P(θT ≥ c) =
exp(−T I (c) + K (c))

acσc
√

2πT


1 +

p
k=1

dc,k

T k +O


1
T p+1


(1.8)

where

ac = 2(c − θ) and σ 2
c =

c2

2(2c − θ)3 (1.9)

K (c) = −
1
2

log


(c − θ)(3c − θ)

4c2


. (1.10)

(c) For c = θ/3, there exists a sequence (ek) such that, for any p > 0 and T large enough,

P(θT ≥ c) =
exp(−T I (c))

2πT 1/4
Γ (1/4)

a3/4
θ σθ


1 +

2p
k=1

ek

(
√

T )k
+O


1

T p
√

T


(1.11)

where

aθ = −
4θ

3
and σ 2

θ = −
3

2θ
. (1.12)

(d) Finally, for c = 0, p > 0 and for T large enough,

P(θT ≥ 0) = 2
exp(−T I (c))
√

2πT
√

−2θ


1 +

p
k=1

(2k)!

22kθk T kk!
+O


1

T p+1


. (1.13)

Our purpose is to extend this investigation by establishing SLDP for (θT ) in the explosive and
unstable cases. Similar results in discrete time for the Gaussian autoregressive process may be
found in [1]. We also refer the reader to [2] where SLDP for the maximum likelihood estimator of
θ is proved for the stable Ornstein–Uhlenbeck process driven by a fractional Brownian motion.
We wish to mention here that it should be possible to extend the previous work of Zani [17] to
generalized squared radial Ornstein–Uhlenbeck processes with parameter θ > 0, given by

d X t = 2θ X t dt + δdt + 2


X t d Bt .

As a matter of fact, as soon as the dimensional parameter δ > 0 is known, the maximum
likelihood estimator of θ is

θT =
XT − δT

2
 T

0 X t dt
.
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This estimator is quite similar to the maximum likelihood estimator θT given by (1.2).
Consequently, it should be possible to establish SLDP for this estimator in the explosive case
θ > 0. Finally, SLDP are very useful in practical situations as the numerical approximations
calculated via SLDP outperform those obtained with the central limit theorem or with Edgeworth
expansions in a wide range of statistical applications [3].

The paper is organized as follows. In Section 2, we propose a keystone lemma which is at the
core of all our analysis. Section 3 is devoted to the main results of the paper while Section 4 con-
tains their proofs. All the technical proofs of Sections 2 and 4 are postponed to Appendices A–D.

2. A keystone lemma

The sharp large deviations properties of (θT ) are closely related to those of

ZT (c) =

 T

0
X t d X t − c

 T

0
X2

t dt

with c ∈ R since P(θT ≥ c) = P(ZT (c) ≥ 0). One has to keep in mind that the threshold c forθT appears like a parameter for ZT . Denote by LT the normalized cumulant generating function
of ZT (c)

LT (a) =
1
T

log E

exp(aZT (c))


where the parameter c is omitted in order to simplify the notation. Moreover, let L be the
pointwise limit of LT

L(a) = −
1
2


a + θ +


θ2 + 2ac


. (2.1)

All our analysis relies on the following keystone lemma which is true as soon as the drift
parameter θ ≥ 0.

Lemma 2.1. Let ∆c = {a ∈ R, θ2
+ 2ac > 0, a + θ <

√
θ2 + 2ac} be the effective domain

of L, that is the set of points in R for which L is finite, and set ϕ(a) = −
√

θ2 + 2ac, τ (a) =

a + θ − ϕ(a) and h(a) = (a + θ)/ϕ(a).

(a) For all a ∈ ∆c, we have

LT (a) = L(a) +
1
T
H(a) +

1
T
RT (a) (2.2)

where

H(a) = −
1
2

log


1
2
(1 + h(a))


, (2.3)

RT (a) = −
1
2

log


1 +
1 − h(a)

1 + h(a)
exp(2ϕ(a)T )


. (2.4)

(b) Moreover, the remainder RT (a) goes to zero exponentially fast as

RT (a) = O (exp(2ϕ(a)T )) . (2.5)

Proof. The proof of Lemma 2.1 is given in Appendix A. �
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3. Sharp large deviations results

We shall now focus our attention on the explosive case θ > 0. It immediately follows from
(1.1) that

XT = exp(θT )

 T

0
exp(−θ t)d Bt (3.1)

leading to exp(−θT )XT = YT where

YT =

 T

0
exp(−θ t)d Bt .

The Gaussian process (YT ) converges almost surely and in mean square to the nondegenerate
Gaussian random variable

Y =


∞

0
exp(−θ t)d Bt .

Hence, via Toeplitz’s lemma,

lim
T →∞

1
exp(2θT )

 T

0
X2

t dt =
Y 2

2θ
a.s.

Consequently, one can expect for (θT ) an LDP with speed exp(2θT ). However, (θT ) is a sequence
of self-normalized random variables and we shall now show that (θT ) satisfies an LDP similar to
that of Lemma 1.1 with speed T .

Lemma 3.1. If θ > 0, then (θT ) satisfies an LDP with speed T and good rate function

I (c) =


−

(c − θ)2

4c
if c ≤ −θ,

θ if |c| < θ,

0 if c = θ,

2c − θ if c > θ.

(3.2)

Remark 3.2. As for the Gaussian autoregressive process [1], one can observe that the rate
function I in the explosive case is really unusual with a shaped flat valley and an abrupt
discontinuity point at its minimum. It is possible to give some intuition on the size of the
discontinuity jump. As a matter of fact, we already saw in the introduction that, if θ > 0,

exp(θT )(θT − θ)
L
−→ 2θ


Y
Z


where Y, Z are two independent Gaussian N (0, 1) random variables. The size of the jump is
precisely given by the logarithm of the rate exp(θT ) properly normalized,

1
T

log(exp(θT )) = θ.

The SLDP for (θT ), quite similar to the one established in the stable case, is as follows.

Theorem 3.3. Consider the Ornstein–Uhlenbeck process given by (1.1) where the drift parame-
ter θ > 0.



Author's personal copy

3398 B. Bercu et al. / Stochastic Processes and their Applications 122 (2012) 3393–3424

(a) For all c < −θ , there exists a sequence (bc,k) such that, for any p > 0 and T large enough,

P(θT ≤ c) =
− exp(−T I (c) + H(c))

acσc
√

2πT


1 +

p
k=1

bc,k

T k +O


1
T p+1


(3.3)

where

ac =
c2

− θ2

2c
and σ 2

c = −
1
2c

(3.4)

H(c) = −
1
2

log


(c + θ)(3c − θ)

4c2


. (3.5)

(b) For all c > θ , there exists a sequence (dc,k) such that, for any p > 0 and T large enough,

P(θT ≥ c) =
exp(−T I (c) + K (c))

acσc
√

2πT


1 +

p
k=1

dc,k

T k +O


1
T p+1


(3.6)

where

ac = 2(c − θ) and σ 2
c =

c2

2(2c − θ)3 (3.7)

K (c) = −
1
2

log


(c − θ)(3c − θ)

4c2


. (3.8)

(c) For all |c| < θ with c ≠ 0, there exists a sequence (ec,k) such that, for any p > 0 and T
large enough,

P(θT ≤ c) =
exp(−T I (c) + J (c))

acσc
√

2πT


1 +

p
k=1

ec,k

T k +O


1
T p+1


(3.9)

where

ac =
θ

c + θ
and σ 2

c =
c2

2θ3 (3.10)

J (c) = −
1
2

log


(θ − c)(θ + c)
4c2


. (3.11)

(d) For c = −θ , there exists a sequence ( fk) such that, for any p > 0 and T large enough,

P(θT ≤ c) =
exp(−T I (c))

2πT 1/4
Γ (1/4)

a3/4
θ σθ


1 +

2p
k=1

fk

(
√

T )k
+O


1

T p
√

T


(3.12)

where

aθ =
√

θ and σ 2
θ =

1
2θ

. (3.13)

(e) Finally, for c = 0, p > 0 and for T large enough,

P(θT ≤ 0) = 2
exp(−T I (c))

√
2θT

√
2π

×


1 +

p
k=1

(−1)k(θT e−2θT )k

(2k + 1)k!
+O


(T e−2θT )p+1


. (3.14)
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Remark 3.4. One can observe that all the sequences (bc,k) (dc,k), (ec,k) may be explicitly
calculated as in Theorem 4.1 of [4].

Proof. The proofs are given in Section 4. �
The unstable case θ = 0 can be handled exactly like the explosive case θ > 0 since Lemma 2.1

is also true in the unstable situation. Consequently, we directly obtain the LDP and SLDP for (θT )

in the unstable case by replacing θ by 0 in the previous results.

Lemma 3.5. If θ = 0, then (θT ) satisfies an LDP with speed T and good rate function

I (c) =


−

c
4

if c ≤ 0,

2c otherwise.
(3.15)

Theorem 3.6. Consider the Ornstein–Uhlenbeck process given by (1.1) where the drift parame-
ter θ = 0.

(a) For all c < 0, there exists a sequence (bc,k) such that, for any p > 0 and T large enough,

P(θT ≤ c) =
−2 exp(−T I (c))

acσc
√

6πT


1 +

p
k=1

bc,k

T k +O


1
T p+1


(3.16)

where ac = c/2 and σ 2
c = −1/(2c).

(b) For all c > 0, there exists a sequence (dc,k) such that, for any p > 0 and T large enough,

P(θT ≥ c) =
2 exp(−T I (c))

acσc
√

6πT


1 +

p
k=1

dc,k

T k +O


1
T p+1


(3.17)

where ac = 2c and σ 2
c = 1/(16c).

4. Proofs of the main results

4.1. Proof of Theorem 3.3(a)

We first focus our attention on the easy case c < −θ . One can observe that ac, given by (3.4),
belongs to the effective domain ∆c = ]−∞, 0[ whenever c < −θ . Consider the usual change of
probability

dPT

dP
= exp (ac ZT (c) − TLT (ac)) (4.1)

and denote by ET the expectation associated with PT . We clearly have

P(θT ≤ c) = P(ZT (c) ≤ 0) = E[IZT (c)≤0],

= ET

exp(−ac ZT (c) + TLT (ac))IZT (c)≤0


,

= exp (TLT (ac)) ET

exp(−ac ZT (c))IZT (c)≤0


.

Consequently, we can split P(θT ≤ c) into two terms: P(θT ≤ c) = AT BT with

AT = exp(TLT (ac)), (4.2)
BT = ET [exp(−ac ZT (c))IZT (c)≤0]. (4.3)
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On the one hand, we can deduce from (2.2) and (2.5) together with the definition (3.2) of I that

AT = exp (TL(ac) +H(ac) +RT (ac)) ,

AT = exp (−T I (c) +H(ac))


1 +O


e2T c


. (4.4)

It only remains to provide the asymptotic expansion of BT . In all the sequel, the parameter c is
omitted in order to simplify the notation in the Taylor expansions.

Lemma 4.1. For all c < −θ , there exists a sequence (βk) such that, for any p > 0 and T large
enough,

BT =
β0
√

T


1 +

p
k=1

βk

T k +O


1
T p+1


. (4.5)

The sequence (βk) only depends on the derivatives of L and H evaluated at point ac. For
example,

β0 = −
1

acσc
√

2π
.

Proof. The proof of Lemma 4.1 is given in Appendix C. �

Proof of Theorem 3.3(a). The asymptotic expansion (3.3) immediately follows from (4.4) and
(4.5). �

4.2. Proof of Theorem 3.3(b)

In the more complicated case c > θ , the effective domain ∆c = ]0, 2(c − θ)[ and the function
L is decreasing over the interval ]0, 2(c − θ)[ as

L′(a) = −
1
2


1 +

c
√

θ2 + 2ac


.

Consequently, L reaches its minimum at the value ac = 2(c − θ) given by (3.7). Therefore,
it is necessary to make use of a slight modification of the strategy of time varying change of
probability proposed by Bryc and Dembo [6]. The key point is that there exists a unique aT ,
which belongs to the effective domain ∆T,c of LT and converges to ac as T goes to infinity,
which is the solution of the implicit equation given by (4.9) below. Hereafter, we introduce the
new probability measure

dPT

dP
= exp (aT ZT (c) − TLT (aT )) (4.6)

and we denote by ET the expectation under PT . It leads to the decomposition P(θT ≥ c) =

AT BT where

AT = exp (TLT (aT )) , (4.7)

BT = ET

exp(−aT ZT (c))IZT (c)≥0


. (4.8)

The proof now splits into two parts: the first one is devoted to the asymptotic expansion of AT
while the second one gives the asymptotic expansion of BT .
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Lemma 4.2. For all c > θ , there exists a unique aT , which belongs to the interior of ∆T,c and
converges to ac = 2(c − θ) as T goes to infinity, which is the solution of the implicit equation

L′(a) +
1
T
H′(a) = 0 (4.9)

where the functions L and H are given by (2.1) and (2.3). Moreover, there exists a sequence (γk)

such that, for any p > 0 and T large enough,

AT = exp (−T I (c) + P(c))
√

eT


1 +

p
k=1

γk

T k +O


1
T p+1


(4.10)

where

P(c) = −
1
2

log


(c − θ)

2(2c − θ)(3c − θ)


. (4.11)

The sequence (γk) only depends on the Taylor expansion of aT in the neighborhood of ac
together with the derivatives of L and H at point ac. For example,

γ1 =
c(c2

− 3θc + θ2)

2(c − θ)(θ − 2c)(3c − θ)2 .

Proof. The proof of Lemma 4.2 is given in Appendix B. �
It now remains to give the asymptotic expansion of BT .

Lemma 4.3. For all c > θ , there exists a sequence (δk) such that, for any p > 0 and T large
enough,

BT =

p
k=1

δk

T k +O


1
T p+1


. (4.12)

The sequence (δk) only depends on the Taylor expansion of aT in the neighborhood of ac
together with the derivatives of L and H at point ac. For example,

δ1 =
1

acδ
√

2πe
where δ = −L′(ac) =

(3c − θ)

2(2c − θ)
.

Proof. The proof of Lemma 4.3 is given in Appendix C. �

Proof of Theorem 3.3(b). The asymptotic expansions (4.10) and (4.12) immediately imply
(3.6). �

4.3. Proof of Theorem 3.3(c)

In the case |c| < θ and c ≠ 0, one can easily see that the effective domain is

∆c =


] − ∞, 0[ if − θ < c < 0,
−

θ2

2c
, 0


if 0 < c ≤
θ

2
,

]2(c − θ), 0[ if
θ

2
≤ c < θ.
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In addition, the function L is always decreasing over ∆c and L reaches its minimum at the
origin. Consequently, the proof follows essentially the same lines as the one for c > θ with
ac = 0. In fact, with the new probability measure given by (4.6), we have the decomposition
P(θT ≤ c) = AT BT where

AT = exp (TLT (aT )) , (4.13)

BT = ET

exp(−aT ZT (c))IZT (c)≤0


. (4.14)

The proof is also divided into two parts: the first one is devoted to the asymptotic expansion of
AT while the second one gives the asymptotic expansion of BT .

Lemma 4.4. For all |c| < θ and c ≠ 0, there exists a unique aT , which belongs to the interior
of ∆T,c and converges to the origin as T goes to infinity, which is the solution of the implicit
equation

L′(a) +
1
T
H′(a) = 0 (4.15)

where the functions L and H are given by (2.1) and (2.3). Moreover, there exists a sequence (γk)

such that, for any p > 0 and T large enough,

AT = exp (−T I (c) + P(c))
√

eT


1 +

p
k=1

γk

T k +O


1
T p+1


(4.16)

where

P(c) = −
1
2

log


(θ − c)
2θ(c + θ)


. (4.17)

The sequence (γk) only depends on the Taylor expansion of aT in the neighborhood of the origin
together with the derivatives of L and H at 0. For example,

γ1 = −
c(c2

+ θc − θ2)

2θ(c − θ)(c + θ)2 .

Proof. The proof of Lemma 4.4 is given in Appendix B. �
The asymptotic expansion of BT is as follows.

Lemma 4.5. For all |c| < θ and c ≠ 0, there exists a sequence (δk) such that, for any p > 0
and T large enough,

BT =

p
k=1

δk

T k +O


1
T p+1


. (4.18)

The sequence (δk) only depends on the Taylor expansion of aT in the neighborhood of the origin
together with the derivatives of L and H at 0. For example,

δ1 =
1

acδ
√

2πe
where δ = −L′(0) = −

(c + θ)

2θ
.

Proof. The proof of Lemma 4.5 is given in Appendix C. �
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Proof of Theorem 3.3(c). The asymptotic expansion (3.9) immediately follows from (4.16) and
(4.18). �

4.4. Proof of Theorem 3.3(d)

In the particular case c = −θ,∆c =] − ∞, 0[ and we find a new regime in the asymptotic
expansions of aT , AT , and BT .

Lemma 4.6. For c = −θ , there exists a unique aT , which belongs to the interior of ∆T,c and
converges to the origin as T goes to infinity, which is the solution of the implicit equation

L′(a) +
1
T
H′(a) = 0 (4.19)

where the functions L and H are given by (2.1) and (2.3). Moreover, there exists a sequence (γk)

such that, for any p > 0 and T large enough,

AT = exp (−T I (c)) (eθT )1/4


1 +

2p
k=1

γk

(
√

T )k
+O


1

T p
√

T


. (4.20)

The sequence (γk) only depends on the Taylor expansion of aT in the neighborhood of the origin
together with the derivatives of L and H at 0. For example,

γ1 =
3

8
√

θ
.

Proof. The proof of Lemma 4.6 is given in Appendix B. �
It now remains to give the asymptotic expansion of BT .

Lemma 4.7. For c = −θ , there exists a sequence (δk) such that, for any p > 0 and T large
enough,

BT =

2p
k=1

δk

(
√

T )k
+O


1

T p
√

T


. (4.21)

The sequence (δk) only depends on the Taylor expansion of aT in the neighborhood of the origin
together with the derivatives of L and H at 0. For example,

δ1 =
1

2π
e−1/4Γ


1
4


.

Proof. The proof of Lemma 4.7 is given in Appendix C. �

Proof of Theorem 3.3(d). We immediately deduce (3.12) from (4.20) together with (4.21). �

4.5. Proof of Theorem 3.3(e)

We obtain from (3.1) that XT is Gaussian with an N (0, σ 2
T ) distribution where

σ 2
T =

1
2θ

(exp(2θT ) − 1) .
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Moreover, we clearly have

P(θT ≤ 0) = P(X2
T ≤ T ) = P(|XT | ≤

√
T ) = 2P(0 ≤ XT ≤

√
T )

= 2P(0 ≤ Z ≤ dT ) (4.22)

where Z is an N (0, 1) random variable and the sequence (dT ) satisfies

dT =


2θT exp(−2θT )

1 +O(exp(−2θT ))


.

For all x > 0, define

F(x) =

 x

0
f (t) dt

where f stands for the probability density function of the N (0, 1) distribution. It is well-known
that for all n ≥ 1, the Gaussian derivatives are

f (n)(x) =
(−1)n

2n/2 Hn


x

√
2


f (x)

where (Hn) is the sequence of Hermite polynomials. For example, we have H0(x) = 1, H1(x) =

2x, H2(x) = −2 + 4x2, etc. Hence,

f (n)(0) =
(−1)n

√
2π2n/2

Hn

where Hn = Hn(0) are the Hermite numbers given by the relation Hn = −2(n − 1)Hn−2 with
H0 = 1 and H1 = 0 which implies that

Hn =


0 if n is odd,
(−1)n/2n!

(n/2)!
if n is even.

Consequently, in the neighborhood of the origin, we have, for all x > 0, the Taylor expansion
also given in [14, p. 16]:

F(x) =
x

√
2π


1 +

p
k=1

(−1)k x2k

(2k + 1)2kk!
+O(x p+1)


. (4.23)

Therefore, we deduce from the identity P(θT ≤ 0) = 2F(dT ) together with (4.23) that

P(θT ≤ 0) = 2
exp(−θT )

√
2θT

√
2π


1 +

p
k=1

(−1)k(θT e−2θT )k

(2k + 1)k!
+O


(T e−2θT )p+1


,

which immediately leads to (3.14). �
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Appendix A. Proof of the keystone lemma, Lemma 2.1

Our goal is to prove the asymptotic expansion (2.2) associated with the normalized cumulant
generating function LT . Via the same approach as in Section 17.3 of Liptser and Shiryaev [15],
we have

LT (a) =
1
T

log E


exp


a
 T

0
X t d X t − ac

 T

0
X2

t dt


,

=
1
T

log Eϕ


exp


(a + θ − ϕ)

 T

0
X t d X t +

1
2
(−2ac − θ2

+ ϕ2)

 T

0
X2

t dt


for all ϕ ∈ R, where Eϕ stands for the expectation after the change of probability measures

dPϕ

dP
= exp


(ϕ − θ)

 T

0
X t d X t −

1
2
(ϕ2

− θ2)

 T

0
X2

t dt


.

Hereafter, consider a ∈ ∆c = {a ∈ R, θ2
+2ac > 0, a +θ <

√
θ2 + 2ac} so that we can choose

ϕ = ϕ(a) where ϕ(a) = −
√

θ2 + 2ac. Then, if we define τ(a) = a + θ − ϕ(a), we obtain that

LT (a) =
1
T

log Eϕ


exp


τ(a)

 T

0
X t d X t


. (A.1)

However, we have from Itô’s formula that T

0
X t d X t =

1
2


X2

T − T


.

Consequently, we obtain from (A.1) that

LT (a) = −
τ(a)

2
+

1
T

log Eϕ


exp


τ(a)

2
X2

T


. (A.2)

Under the measure Pϕ, XT is a Gaussian random variable with zero mean and variance σ 2
T (a)

given by

σ 2
T (a) = −

1 − exp(2ϕ(a)T )

2ϕ(a)
.

Hence, it follows from (A.2) that

LT (a) = −
τ(a)

2
−

1
2T

log


1 +
τ(a)

2ϕ(a)
(1 − exp(2ϕ(a)T ))


. (A.3)

Finally, if

h(a) =
a + θ

ϕ(a)
=

τ(a)

ϕ(a)
+ 1,
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we find from (A.3) the decomposition

LT (a) = −
τ(a)

2
−

1
2T

log


1 +
1
2
(h(a) − 1) (1 − exp(2ϕ(a)T ))


,

= −
τ(a)

2
−

1
2T

log


1
2
(1 + h(a)) +

1
2
(1 − h(a)) exp(2ϕ(a)T )


,

= −
τ(a)

2
−

1
2T

log


1
2
(1 + h(a))


−

1
2T

log


1 +
1 − h(a)

1 + h(a)
exp(2ϕ(a)T )


,

= L(a) +
1
T
H(a) +

1
T
RT (a).

One can observe that the remainder RT (a) goes to zero exponentially fast as RT (a) =

O(exp(2ϕ(a)T )), which completes the proof of Lemma 2.1. �

Appendix B. On the expansions of AT

All asymptotic expansions associated with AT are related to the fact that there exists a unique
aT , which belongs to the effective domain ∆T,c of LT and converges to ac = 2(c − θ) if c > θ ,
and to the origin if |c| < θ , which is the solution of the implicit equation

L′(a) +
1
T
H′(a) = 0 (B.1)

where the functionsL andH are given by (2.1) and (2.3). After some straightforward calculation,
(B.1) can be rewritten as

T ϕ(a)(ϕ(a) − c)(ϕ(a) + a + θ) = c(a + θ) − ϕ2(a). (B.2)

One can observe that (B.2) may also be rewritten as

T ϕ(a)(ϕ(a) − c)(ϕ(a) + θ)(ϕ(a) + 2c − θ) = −
c
2
(ϕ2(a) + θ2

− 2θc)

which ensures that ϕ(aT ) converges to θ − 2c, while aT < 2(c − θ) and aT converges to ac.
Moreover, it follows from (2.2) that

AT = exp (TL(aT ) +H(aT ) +RT (aT )) ,

= exp (TL(aT )) exp (H(aT )) exp (RT (aT )) . (B.3)

Therefore, the proofs of the expansions of AT are divided into four steps. The first one is devoted
to the asymptotic expansions of aT and ϕ(aT ). The last three deal with the asymptotic expansions
of all terms in (B.3).

B.1. Proof of Lemma 4.2

Step 1. One can find two sequences (ak) and (ϕk) such that, for any p > 0 and T large enough,

aT =

p
k=0

ak

T k +O


1
T p+1
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where a0 = 2(c − θ),

a1 =
θ − 2c
3c − θ

and a2 = −
c(c2

− 5θc + 2θ2)

2(c − θ)(3c − θ)3 ,

ϕ(aT ) =

p
k=0

ϕk

T k +O


1
T p+1


where ϕ0 = θ − 2c,

ϕ1 =
c

3c − θ
and ϕ2 =

c2(4c2
− 9θc + 3θ2)

2(c − θ)(2c − θ)(3c − θ)3 .

Proof. We are in the situation where c > θ, ac = 2(c − θ) and ϕ(ac) = θ − 2c. Consequently,
ϕ(ac) − c = θ − 3c ≠ 0 while ϕ(ac) + ac + θ = 0. One can easily deduce from (B.2) that

lim
T →∞

T (ϕ(aT ) + aT + θ) =
c − θ

θ − 3c
. (B.4)

Therefore, the conjunction of (B.2) and (B.4) leads to the asymptotic expansions of aT and
ϕ(aT ). Let us explain now how to calculate the first terms of the expansions. On the one hand, as

ϕ(aT ) = −


θ2 + 2aT c,

we have

a0 =
ϕ2

0 − θ2

2c
, a1 =

ϕ0ϕ1

c
, a2 =

2ϕ0ϕ2 + ϕ2
1

2c
. (B.5)

On the other hand, it follows from (B.2) that

ϕ1 + a1 =
c(a0 + θ) − ϕ2

0
ϕ0(ϕ0 − c)

,

ϕ2 + a2 =
ca1 − 2ϕ0ϕ1 − (ϕ1 + a1)ϕ1(2ϕ0 − c)

ϕ0(ϕ0 − c)
.

Finally, in order to calculate a1, a2, ϕ1, and ϕ2, it is only necessary to solve very simple linear
systems. The rest of the proof is left to the reader. �
Step 2. One can find a sequence (αk) such that, for any p > 0 and T large enough,

exp (TL(aT )) = exp


−T I (c) +
1
2


1 +

p
k=1

αk

T k +O


1
T p+1


. (B.6)

The sequence (αk) only depends on (ak) together with the derivatives of L at point ac. For
example,

α1 =
c(c2

− 3θc + θ2)

2(c − θ)(2c − θ)(3c − θ)2 .

Proof. By the Taylor expansion of L in the neighborhood of ac, we have the existence of a
sequence (ℓk) such that, for any p > 0 and T large enough,

TL(aT ) = TL(ac) + a1L′(ac) +

p
k=1

ℓk

T k +O


1
T p+1


. (B.7)
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On the one hand,

a1L′(ac) =
1
2
.

On the other hand,

ℓ1 = a2L′(ac) +
1
2

a2
1L′′(ac) =

c(c2
− 3θc + θ2)

2(c − θ)(2c − θ)(3c − θ)2 .

Therefore, (B.6) clearly follows from (B.7). �

Step 3. One can find a sequence (βk) such that, for any p > 0 and T large enough,

exp (H(aT )) =


2ϕ0T

ϕ1 + a1


1 +

p
k=1

βk

T k +O


1
T p+1


. (B.8)

The sequence (βk) only depends on (ak) together with the derivatives of H at point ac. For
example,

β1 =
c(c2

− 3θc + θ2)

(c − θ)(θ − 2c)(3c − θ)2 .

Proof. By the very definition ofH, we have

exp (H(aT )) =


2ϕ(aT )T

T (ϕ(aT ) + aT + θ)
.

Consequently, the expansion of the square root, together with those of aT and ϕ(aT ), ensure the
existence of a sequence (βk) such that (B.8) is true. Moreover, as for (αk), the sequence (βk) can
be explicitly calculated. For example

β1 =
1
2


ϕ1

ϕ0
−

ϕ2 + a2

ϕ1 + a1


=

c(c2
− 3θc + θ2)

(c − θ)(θ − 2c)(3c − θ)2 . �

Step 4. The remainder RT (aT ) goes to zero exponentially fast:

RT (aT ) = O (T exp(2ϕ0T )) . (B.9)

Proof. The result follows from (2.4) together with the fact that ϕ0 < −θ < 0. More precisely,
we have

1 − h(aT )

1 + h(aT )
=

T (ϕ(aT ) − aT − θ)

T (ϕ(aT ) + aT + θ)

which implies via (B.4) that

lim
T →∞

1
T


1 − h(aT )

1 + h(aT )


=

ϕ0 − a0 − θ

ϕ1 + a1
=

2(2c − θ)(3c − θ)

c − θ
. (B.10)

Consequently, we immediately deduce (B.9) from (2.4) and (B.10). �

Proof of Lemma 4.2. It follows from the conjunction of (B.3), (B.6), (B.8) and (B.9) that there
exists a sequence (γk) such that, for any p > 0 and T large enough,
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AT = exp


−T I (c) +
1
2


2ϕ0T

ϕ1 + a1


1 +

p
k=1

γk

T k +O


1
T p+1


,

= exp (−T I (c) + P(c))
√

eT


1 +

p
k=1

γk

T k +O


1
T p+1


, (B.11)

where P(c) is given by (4.11). Finally, the sequence (γk) can be explicitly calculated by the use
of (ak) together with the derivatives of L andH at point ac. For example,

γ1 = α1 + β1 =
c(c2

− 3θc + θ2)

2(c − θ)(θ − 2c)(3c − θ)2 . �

B.2. Proof of Lemma 4.4

We are in the situation where |c| < θ and c ≠ 0 which means that ac = 0 and ϕ(ac) = −θ .
Consequently, ϕ(ac) − c = −(θ + c) ≠ 0 while ϕ(ac) + ac + θ = 0. The proof of Lemma 4.4
follows exactly the same lines as those of Lemma 4.2. The only notable point to mention is that

aT =

p
k=0

ak

T k +O


1
T p+1


where a0 = 0,

a1 = −
θ

c + θ
and a2 = −

c(c2
+ 3θc − 2θ2)

2(c − θ)(c + θ)3 ,

ϕ(aT ) =

p
k=0

ϕk

T k +O


1
T p+1


where ϕ0 = −θ ,

ϕ1 =
c

c + θ
and ϕ2 =

c2(2c2
+ 3θc − 3θ2)

2θ(c − θ)(c + θ)3 .

Therefore, the rest of the proof of the Lemma 4.4 is left to the reader. �

B.3. Proof of Lemma 4.6

The proof of Lemma 4.6 is slightly different from that of Lemma 4.2. More precisely, there is
a change of regime in the asymptotic expansions of aT and ϕ(aT ).
Step 1. One can find two sequences (ak) and (ϕk) such that, for any p > 0 and T large enough,

aT =

2p
k=0

ak

(
√

T )k
+O


1

T p
√

T


where a0 = 0, a1 = −

√
θ , and a2 = −1/8,

ϕ(aT ) =

2p
k=0

ϕk

(
√

T )k
+O


1

T p
√

T


where ϕ0 = −θ, ϕ1 = −

√
θ , and ϕ2 = 3/8.



Author's personal copy

3410 B. Bercu et al. / Stochastic Processes and their Applications 122 (2012) 3393–3424

Proof. We are in the situation where c = −θ, ac = 0 and ϕ(ac) = −θ which clearly implies
that ϕ(ac) − c = −(θ + c) = 0 and ϕ(ac) + ac + θ = 0. It leads to a change of regime in the
expansions of aT and ϕ(aT ) comparing to the expansions of aT and ϕ(aT ) in Lemma 4.2. As a
matter of fact, we obtain from (B.2) that

lim
T →∞

T (ϕ(aT ) + θ)(ϕ(aT ) + aT + θ) = 2θ. (B.12)

Therefore, one can easily deduce the expansions of aT and ϕ(aT ) from (B.2) and (B.12). The
calculation of the first terms is straightforward. For example, as

ϕ(aT ) = −


θ2 − 2θaT ,

we obtain that a0 = 0, ϕ0 = −θ ,

ϕ1 = a1 and ϕ2 = a2 +
1
2
.

In addition, we infer from (B.2) that

ϕ1(a1 + ϕ1) = 2θ and a2 + 3ϕ2 = 1.

Consequently, we immediately obtain that a2
1 = θ which implies that a1 = −

√
θ as aT belongs

to the interior of ∆c =] − ∞, 0[. It remains to solve the simple linear system
2a2 − 2ϕ2 = −1,

a2 + 3ϕ2 = 1

whose solution is a2 = −1/8 and ϕ2 = 3/8. �
Step 2. One can find a sequence (αk) such that, for any p > 0 and T large enough,

exp (TL(aT )) = exp


−T I (c) +
1
4


1 +

2p
k=1

αk

(
√

T )k
+O


1

T p
√

T


. (B.13)

The sequence (αk) only depends on (ak) together with the derivatives of L at the origin. For
example,

α1 = −
3

16
√

θ
.

Proof. By the Taylor expansion of L in the neighborhood of the origin, as L′(0) = 0, we have
the existence of a sequence (ℓk) such that, for any p > 0 and T large enough,

TL(aT ) = TL(0) +
a2

1
2
L(2)(0) +

2p
k=1

ℓk

(
√

T )k
+O


1

T p
√

T


. (B.14)

On the one hand, L(2)(0) = 1/(2θ) which implies that

a2
1

2
L(2)(0) =

1
4
.

On the other hand, as L(3)(0) = 3/(2θ2), we also have

ℓ1 = a1a2L(2)(0) +
a3

1
6
L(3)(0) = −

3

16
√

θ
.
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Therefore, we deduce (B.13) from (B.14). �
Step 3. One can find a sequence (βk) such that, for any p > 0 and T large enough,

exp (H(aT )) = (θT )1/4


1 +

2p
k=1

βk

(
√

T )k
+O


1

T p
√

T


. (B.15)

The sequence (βk) only depends on (ak) together with the derivatives of H at the origin. For
example,

β1 =
9

16
√

θ
.

Proof. By the very definition ofH, we have

exp (H(aT )) =


2ϕ(aT )

√
T

√
T (ϕ(aT ) + aT + θ)

.

Hence, the expansion of the square root, together with those of aT and ϕ(aT ), ensure the
existence of a sequence (βk) such that (B.15) is true. As before, the sequence (βk) can be
explicitly calculated. For example,

β1 =
1
2


ϕ1

ϕ0
−

ϕ2 + a2

ϕ1 + a1


=

9

16
√

θ
.

Step 4. The remainder RT (aT ) goes to zero exponentially fast:

RT (aT ) = O
√

T exp(−2θT )


. � (B.16)

Proof. We have

1 − h(aT )

1 + h(aT )
=

√
T (ϕ(aT ) − aT − θ)

√
T (ϕ(aT ) + aT + θ)

,

which implies that

lim
T →∞

1
√

T


1 − h(aT )

1 + h(aT )


=

√
θ. (B.17)

Consequently, we immediately deduce (B.16) from (2.4) and (B.17). �

Proof of Lemma 4.6. It follows from (B.3), together with (B.13), (B.15) and (B.16), that there
exists a sequence (γk) such that, for any p > 0 and T large enough,

AT = exp (−T I (c)) (eθT )1/4


1 +

2p
k=1

γk

(
√

T )k
+O


1

T p
√

T


where the sequence (γk) can be explicitly calculated by the use of (ak) together with the deriva-
tives of L andH at the origin. For example,

γ1 = α1 + β1 =
3

8
√

θ
. �
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Appendix C. On the expansions of BT

C.1. General considerations

In order to unify the notation, let αT = ac if c < −θ and αT = aT otherwise. In addition,
define

βT =


σc

√
T if c < −θ,

√
T if c = −θ,

T if |c| < θ,

−T if c > θ.

One can observe that we always have αT βT < 0. Then, in all different cases,

BT = ET

exp(−αT βT UT )IUT ≤0


(C.1)

where

UT =
ZT (c)
βT

.

Denote by ΦT the characteristic function of UT under PT and assume in all the sequel that
c ≠ 0.

Lemma C.1. For T large enough, ΦT belongs to L2(R) and, for all u ∈ R,

ΦT (u) = exp


TLT


αT +

iu
βT


− TLT (αT )


. (C.2)

Moreover, we can split BT into two terms: BT = CT + DT where

CT = −
1

2παT βT


|u|≤sT


1 +

iu
αT βT

−1

ΦT (u)du, (C.3)

DT = −
1

2παT βT


|u|>sT


1 +

iu
αT βT

−1

ΦT (u)du. (C.4)

where sT is chosen in such a way that there are positive constants C and 0 < ν < 1
satisfying

min


T s2

T

β2
T

,
T

√
sT

√
|βT |


≥ CT ν (C.5)

and there exist two positive constants d and D such that

|DT | ≤ dT exp(−DT ν). (C.6)

We choose sT large enough to satisfy (C.5) and small enough to enable us to permute the
integral and summation in (C.3). The expansion of CT thus follows from that of ΦT and some
tedious calculations. Finally, (C.6) tells us that the expansion of BT is nothing but that of CT .
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Proof of Lemma C.1. For all u ∈ R, we have

ΦT (u) = ET

exp(iuUT )


,

= E


exp


iu
ZT (c)
βT


exp (αT ZT (c) − TLT (αT ))


,

= E


exp


αT +
iu
βT


ZT (c)


exp (−TLT (αT )) ,

= exp


TLT


αT +

iu
βT


− TLT (αT )


.

We shall see in Appendix D that for T large enough, ΦT ∈ L2(R). Then, it follows from the
Parseval formula that

BT = ET

exp(−αT βT UT )IUT ≤0


,

= −
1

2π


R

1
αT βT + iu

ΦT (u)du,

= −
1

2παT βT


R


1 +

iu
αT βT

−1

ΦT (u)du

which implies that BT = CT + DT where CT and DT are given by (C.3) and (C.4). It remains to
show that DT goes exponentially fast to zero. We deduce from the Cauchy–Schwarz inequality
that

|DT |
2

≤
1

4π2α2
T β2

T


|u|>sT


1 +

u2

(αT βT )2

−1

du


|u|>sT

|ΦT (u)|2 du. (C.7)

On the one hand,
|u|>sT


1 +

u2

(αT βT )2

−1

du ≤ |αT βT |


R

1
1 + v2 dv ≤ |αT βT |π. (C.8)

On the other hand, we deduce from (C.2) together with inequality (D.1) that for T large enough,

|ΦT (u)|2 ≤ 4ℓ(αT , c, θ)


1 + γ 2
T u2

1/4
exp


T ϕT

8
γ 2

T u2


1 + γ 2
T u2

−3/4


where ϕT = ϕ(αT ) and

γT =
2|c|

|βT |ϕ2(αT )
.

It is not hard to see that we can find a positive constant Cℓ such that, for T large enough,
ℓ(αT , c, θ) ≤ CℓT . Consequently, if δT = γT sT , we obtain that

|u|>sT

|ΦT (u)|2 du ≤ 8CℓT


∞

sT


1 + γ 2

T u2
1/4

× exp


T ϕT

8
γ 2

T u2


1 + γ 2
T u2

−3/4


du,

≤
8CℓT
γT


∞

δT


1 + v2

1/4
exp


T ϕT

8
v2


1 + v2
−3/4


dv. (C.9)
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Let g and h be the two functions defined on R+ by

g(v) =
v2

(1 + v2)3/4 and h(v) =
v3/2

(1 + v2)3/4 .

One can observe that g and h are both increasing functions on R+. Moreover, as soon as
v > δT , g(v) =

√
vh(v) >

√
vh(δT ). In addition, for all v ∈ R+, we also have

23/4g(v) ≥ min

v2,

√
v


.

Therefore, we obtain from (C.9) that
|u|>sT

|ΦT (u)|2 du ≤
8CℓT
γT

exp


T ϕT

16
g(δT )


×


∞

δT

21/4 max(1,
√

v) exp(eT
√

v) dv (C.10)

where

eT =
T ϕT

16
h(δT ).

The fact that ϕT < 0 leads to
T ϕT

8
g(δT ) ≤

T ϕT

16
23/4g(δT ),

≤
T ϕT

16
min


δ2

T ,


δT


,

≤
T ϕT

16
min


4c2

ϕ4
T

s2
T

β2
T

,


2|c|

ϕ2
T


sT

|βT |


,

≤ max


c2

4ϕ3
T

, −

√
2|c|
16


min


T

s2
T

β2
T

, T


sT

|βT |


,

≤ −µCT ν

where the positive constant µ in the last inequality is due to the boundedness of the terms in
the max and the power T ν follows from assumption (C.5). Furthermore, for T large enough, the
integral in (C.10) is bounded by 1. As a matter of fact, we have via straightforward calculation
on the Gamma function that

∞

0
max(1,

√
v) exp(eT

√
v) dv ≤

1
eT

max


1, −
2

eT


.

It is not hard to see from assumption (C.5) that eT goes to −∞ as T tends to infinity, which
clearly implies that this integral is as small as one wishes. Then, we infer from (C.10) that for T
large enough,

|u|>sT

|ΦT (u)|2 du ≤
8CℓT
γT

exp(−µCT ν) ≤
8CℓT |βT |ϕ2

T
2|c|

exp(−µCT ν). (C.11)

Finally, we deduce from (C.7), (C.8) and (C.11) that for T large enough,

|DT |
2

≤
8CℓT ϕ2

T
8π |αT c|

exp(−µCT ν)
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which clearly implies that, for two positive constants d and D,

|DT | ≤ dT exp(−DT ν)

and completes the proof of Lemma C.1. �

C.2. Proof of Lemma 4.1

Lemma C.2. For c < −θ , the distribution of UT under PT converges, as T goes to infinity, to
an N (0, 1) distribution which means that ΦT converges to Φ given by

Φ(u) = exp


−
u2

2


.

Moreover, for any p > 0, there exist integers q(p), r(p) and a sequence (ϕk,l) independent of p
such that, for T large enough,

ΦT (u) = Φ(u)


1 +

1
√

T

2p
k=0

q(p)
l=k+1

ϕk,lul

(
√

T )k
+O


max(1, |u|

r(p))

T p+1


(C.12)

where σ 2
c is given by (3.4) and the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.

Proof of Lemma C.2. It follows from (2.2) that for all k ∈ N,

L(k)
T (ac) = L(k)(ac) +

1
T
H(k)(ac) +

1
T
R(k)

T (ac). (C.13)

Moreover, it is rather easy to see that for all k ∈ N,

R(k)
T (ac) = O(T k exp(2T c)). (C.14)

One can observe that L(1)(ac) = 0 and L(2)(ac) = σ 2
c with σ 2

c given by (3.4). In addition, taking
βT = σc

√
T , we also have

T


iu
βT

2 L(2)(ac)

2
= −

u2

2
.

Hence, by a Taylor expansion, we find from (C.2), (C.13) and (C.14) that for any p > 0,

log ΦT (u) = −
u2

2
+ T

2p+3
k=3


iu

σc
√

T

k L(k)(ac)

k!

+

2p+1
k=1


iu

σc
√

T

k H(k)(ac)

k!
+O


max(1, u2p+4)

T p+1


.

Finally, we deduce the asymptotic expansion (C.12) by taking the exponential on both sides,
remarking that, as soon as |u| ≤ sT 1/6 with s > 0, the quantity ul/(

√
T )k remains bounded in

(C.12). �
Proof of Lemma 4.1. In order to achieve the proof of the Lemma 4.1, let sT = sT 1/6 with s > 0
and βT = σc

√
T . As

min


T s2

T

β2
T

,
T

√
sT

√
|βT |


≥ CT 1/3,
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the assumption (C.5) of Lemma C.1 is clearly satisfied. Consequently, there exist two positive
constants d and D such that

|DT | ≤ d exp(−DT 1/3).

Finally, we obtain (4.5) from (C.3) and (C.12) together with standard calculations on theN (0, 1)

distribution. �

C.3. Proof of Lemma 4.3

Lemma C.3. For c > θ , the distribution of UT under PT converges, as T goes to infinity, to the
distribution of γ (N 2

− 1), where N is an N (0, 1) random variable and

γ = L′(2(c − θ)) =
(3c − θ)

2(θ − 2c)
,

which means that ΦT converges to Φ given by

Φ(u) =
exp(−iγ u)
√

1 − 2iγ u
.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m)

independent of p such that, for T large enough,

ΦT (u) = Φ(u) exp


−
σ 2

c u2

2T



×


1 +

p
k=1

q(p)
l=k+1

r(p)
m=0

ϕk,l,mul

T k(1 − 2iγ u)m +O


max(1, |u|
s(p))

T p+1


(C.15)

where σ 2
c is given by (3.7) and the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Proof of Lemma C.3. It follows from (2.2) and (C.2) that

ΦT (u) = exp


T

L


aT +
iu
βT


− L(aT )


+H


aT +

iu
βT


−H(aT ) +R


aT +

iu
βT


−R(aT )


(C.16)

where βT = −T . We shall focus our attention on each term of (C.16). First, by virtue of
Lemma 2.1, the term involving the remainderR does not contribute to the asymptotic expansion
of ΦT . Next, by the very definition (2.1) of L, the first term of (C.16) can be rewritten as

T

L


aT +
iu
βT


− L(aT )


= −

T
2


iu
βT

− ϕT


1 +

iubT

βT

1/2

− 1


where ϕT = −


θ2 + 2aT c and bT = 2c/ϕ2

T . Consequently, as bT /βT tends to 0, we have for
all p ≥ 2,

exp


T

L


aT +
iu
βT


− L(aT )


= exp


−

iuT
2βT

+
T ϕT

2

p
k=1

lk


iubT

βT

k

+O


|u|
p+1

T p+1
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where lk = (−1)k−1(2k)!/((2k − 1)(2kk!)2) which leads to

exp


T

L


aT +
iu
βT


− L(aT )


= exp


−iucT −

dT u2

2T



× exp


T ϕT

2

p
k=3

lk


iubT

βT

k

+O


|u|
p+1

T p+1


(C.17)

where

cT =
c − ϕT

2ϕT
and dT = −

ϕT b2
T

8
.

For the second term of (C.16), we also have, by the very definition (2.3) ofH,

exp

H


aT +
iu
βT


−H(aT )



=

 ϕT + aT + θ

ϕT +


aT + iuβ−1

T + θ
 

1 + iubT β−1
T

−1/2


1/2

.

Hence, we have for all p ≥ 2,

exp

H


aT +
iu
βT


−H(aT )



=
1

√
fT (u)


1 + gT (u)u2

+ hT (u)


p

k=2

hk


iubT

−T

k

+O


|u|
p+1

T p+1

−1/2

(C.18)

where hk = (2k)!/(2kk!)2 and

fT (u) = 1 −
iu
eT

+
(aT + θ)iubT

2eT
,

gT (u) =
bT

2T eT fT (u)
,

hT (u) =
T (aT + θ) − iu

eT fT (u)
,

with eT = T (ϕT + aT + θ). One can easily check that, as T goes to infinity, the limits of
bT , cT , dT , and eT are respectively given by 2c/(θ − 2c)2, γ, σ 2

c , and (θ − c)/(3c − θ) which
implies that fT (u) converges to 1 − 2iγ u. Finally, we find via (C.17) and (C.18) the pointwise
convergence

lim
T →∞

ΦT (u) = Φ(u) =
exp(−iγ u)
√

1 − 2iγ u

while (C.15) follows from the Taylor expansion of the exponential in (C.17) together with the
Taylor expansion of the square root in (C.18). �
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Proof of Lemma 4.3. In order to complete the proof of the Lemma 4.3, let sT = sT 2/3 with
s > 0 and βT = −T . It is not hard to see that

min


T s2

T

β2
T

,
T

√
sT

√
|βT |


≥ CT 1/3,

which means that the assumption (C.5) of Lemma C.1 is satisfied. Therefore, there exist two
positive constants d and D such that

|DT | ≤ dT exp(−DT 1/3).

Finally, we deduce (4.12) from (C.3) and (C.15) via a careful use of the contour integral lemma
for the Gamma function given in Lemma 7.3 of [4]. �

C.4. Proof of Lemma 4.5

Lemma C.4. For |c| < θ with c ≠ 0, the distribution of UT under PT converges, as T goes to
infinity, to the distribution of γ (N 2

− 1), where N is an N (0, 1) random variable and

γ = −L′(0) =
(θ + c)

2θ
,

which means that ΦT converges to Φ given by

Φ(u) =
exp(−iγ u)
√

1 − 2iγ u
.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m)

independent of p, such that, for T large enough,

ΦT (u) = Φ(u) exp


−
σ 2

c u2

2T



×


1 +

p
k=1

q(p)
l=k+1

r(p)
m=0

ϕk,l,mul

T k(1 − 2iγ u)m +O


max(1, |u|
s(p))

T p+1


(C.19)

where σ 2
c is given by (3.10) and the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Proof of Lemma C.4. The proof is left to the reader, as it follows essentially the same lines as
the proof of Lemma C.3. �

Proof of Lemma 4.5. The proof of Lemma 4.5 follows exactly the same arguments as the proof
of Lemma 4.3. The only notable point to mention is that we have to take into account twice the
asymptotic expansion of aT because aT goes to zero as T tends to infinity and aT is also in the
denominator of CT . �

C.5. Proof of Lemma 4.7

Lemma C.5. For c = −θ , the distribution of UT under PT converges, as T goes to infinity, to
the distribution of σθ N +γθ (M2

−1), where σ 2
θ is given by (3.13), N and M are two independent

N (0, 1) random variables and

γθ =
1

2
√

θ
,
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which means that ΦT converges to Φ given by

Φ(u) =
exp (−iγθ u)
√

1 − 2iγθ u
exp


−

σ 2
θ u2

2


.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m)

independent of p, such that, for T large enough,

ΦT (u) = Φ(u)


1 +

1
√

T

2p
k=0

q(p)
l=k+1

r(p)
m=0

ϕk,l,mul

(
√

T )k(1 − 2iγθ u)m

+O


max(1, |u|
s(p))

T p+1


(C.20)

where the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.

Proof of Lemma C.5. The proof is left to the reader as it follows essentially the same lines as
the proof of Lemma C.3. �
Proof of Lemma 4.7. The proof of Lemma 4.7 follows exactly the same arguments as the proof
of Lemma 4.3 with a careful use of the contour integral lemma for the Gamma function given in
Lemma 7.3 of [4]. �

Appendix D. Technical lemmas

D.1. Statement of the results

The effective domain ∆T,c of the normalized cumulant generating functionLT was previously
calculated in Lemma 4.1 of [11]. It is an open interval such that ∆T,c ⊂ ∆T,c ⊂ ∆T,c where

∆T,c =


a ∈ R, θ2

+ 2ac > 0, a + θ <


θ2 + 2ac coth(T


θ2 + 2ac)


and

∆T,c =


a ∈ R, θ2

+ 2ac +
π2

T 2 > 0, a + θ <


θ2 + 2ac coth(T


θ2 + 2ac)

.

Define DT,c = {z ∈ C, Re(z) ∈ ∆T,c} and Dc = {z ∈ C, Re(z) ∈ ∆c}.

Lemma D.1. For T large enough, ΦT belongs to L2(R). More precisely, for T large enough and
for any (a, u) ∈ R2 such that (a + iu) ∈ DT,c,exp (T (LT (a + iu) − LT (a)))

2 ≤ 4ℓ(a, c, θ)


1 +

4c2u2

ϕ4(a)

1/4

× exp


T

c2u2

2ϕ3(a)


1 +

4c2u2

ϕ4(a)

−3/4
(D.1)

where

ℓ(a, c, θ) = max


1,
|ϕ(a) + θ |

|ϕ(a)|


max


1,

|ϕ(a) + 2c − θ |

|ϕ(a)|


. (D.2)
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D.2. Proof of Lemma D.1

The key point is to make use of a complex counterpart of the main decomposition (2.2), which
means that

LT (z) = L(z) +
1
T
H(z) +

1
T
RT (z) (D.3)

where L,H and RT are respectively given by (2.1), (2.3) and (2.4). In order to make these
expressions meaningful, we have to take care with the definitions. We shall denote the principal
determination of the logarithm defined on C\] − ∞, 0] by

log(z) = log |z| + iArg(z),

where

Arg(z) =


arcsin


Im(z)
|z|


if Re(z) ≥ 0,

arccos


Re(z)
|z|


if Re(z) < 0, Im(z) > 0,

− arccos


Re(z)
|z|


if Re(z) < 0, Im(z) < 0.

We also introduce the analytic function defined for all z ∈ C with Re(1 + z) > 0 by

√
1 + z =


|1 + z| exp


i
2

Arg(1 + z)


.

It is not hard to see that

Re(
√

1 + z) =
1

√
2


|1 + z| + 1 + Re(z). (D.4)

The proof of Lemma D.1 follows from the conjunction of three lemmas, each one involving the
functions L,H andRT .

Lemma D.2. The function L given, for all z ∈ C, by

L(z) = −
1
2

(z + θ − ϕ(z)) where ϕ(z) = −


θ2 + 2zc

is differentiable on the domain Dc. Moreover, for all a ∈ ∆c and u ∈ R, we haveexp (T (L(a + iu) − L(a)))

2 ≤ exp


T

c2u2

4ϕ3(a)


1 +

4c2u2

ϕ4(a)

−3/4
. (D.5)

Proof of Lemma D.2. For all z ∈ C such that Re(z) ∈ ∆c, ϕ(z) is well defined. Hence, ϕ is
differentiable on Dc and the same is also true for L. In addition, we have

L(a + iu) − L(a) = −
1
2

(iu − ϕ(a + iu) + ϕ(a))

which clearly implies thatexp (T (L(a + iu) − L(a)))

 ≤ exp


T
2

(Re(ϕ(a + iu) − ϕ(a)))


. (D.6)
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Moreover, we also have

ϕ(a + iu) − ϕ(a) = ϕ(a)


1 +

2icu
ϕ2(a)

− 1


.

We deduce from (D.4) with z = 2icu/ϕ2(a) that

Re (ϕ(a + iu) − ϕ(a)) =
ϕ(a)
√

2


1 +

4c2u2

ϕ4(a)
+ 1 −

√
2

 .

Keeping in mind that ϕ(a) < 0, we infer from the elementary inequality
√

1 + x + 1 −
√

2 ≥
x

4
√

2(1 + x)3/4
,

which is true as soon as x ≥ 0, that

Re (ϕ(a + iu) − ϕ(a)) ≤
c2u2

2ϕ3(a)


1 +

4c2u2

ϕ4(a)

−3/4

.

Finally, it is ensured via (D.6) that for all a ∈ ∆c and u ∈ R,exp (T (L(a + iu) − L(a)))

2 ≤ exp


T

c2u2

4ϕ3(a)


1 +

4c2u2

ϕ4(a)

−3/4
,

which completes the proof of Lemma D.2. �

Lemma D.3. The functionH given, for all z ∈ C, by

H(z) = −
1
2

log


1
2
(1 + h(z))


where h(z) =

(z + θ)

ϕ(z)

is differentiable on the domain Dc. Moreover, for all a ∈ ∆c and u ∈ R, we haveexp(H(a + iu) −H(a))

2 ≤ ℓ(a, c, θ)


1 +

4c2u2

ϕ4(a)

1/4

. (D.7)

Proof of Lemma D.3. First of all, it follows from (2.3) thatexp (H(a + iu) −H(a))

2 =

 1 + h(a)

1 + h(a + iu)

 . (D.8)

We claim that for z ∈ C such that Re(z) ∈ ∆c, 1+h(z) ∈ C\]−∞, 0]. Assume by contradiction
that this is not true, which means that one can find λ ∈ [0, +∞[ such that

1 + h(z) = −λ.

Since, ϕ2(z) = θ2
+ 2cz, ϕ(z) is a root of the quadratic equation

ϕ2(z) + 2c(1 + λ)ϕ(z) − θ2
+ 2cθ = 0.

Its discriminant is non-negative as

4(c − θ)2
+ 4c2λ2

+ 8c2λ ≥ 0.
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One can observe that c, θ and λ are real numbers which implies that ϕ(z) is also a real number,
as well as z. Consequently, z belongs to ∆c and 1 + h(z) > 0 which contradicts the assumption.
This allows us to say thatH is differentiable on Dc. We are now in a position to prove inequality
(D.7). Since ϕ2(z) = θ2

+ 2cz, for z ∈ C such that Re(z) ∈ ∆c, we have

1 + h(z) =
(ϕ(z) + θ)(ϕ(z) + 2c − θ)

2cϕ(z)
. (D.9)

For all z ∈ C such that Re(z) ∈ ∆c, and for all α ∈ R, we clearly have

|ϕ(z) + α|
2

= |ϕ(z)|2 + α2
+ 2αRe(ϕ(z)).

Assume that a belongs to ∆c and let u ∈ R. We already saw that

ϕ(a + iu) = ϕ(a)


1 +

2icu
ϕ2(a)

which leads to

|ϕ(a + iu)|2 = ϕ2(a)

1 +
2icu
ϕ2(a)

 = ϕ2(a)


1 +

4c2u2

ϕ4(a)

1/4

. (D.10)

On the other hand, it also follows from (D.4) that

Re(ϕ(a + iu)) =
ϕ(a)
√

2


1 +

1 +
2icu
ϕ2(a)

 =
ϕ(a)
√

2

1 +


1 +

4c2u2

ϕ4(a)
. (D.11)

Consequently, |ϕ(a + iu)|2 = 2(Re(ϕ(a + iu)))2
− ϕ2(a) which implies thatϕ(a + iu) + α

2 = ϕ2(a)


2(Re(ϕ(a + iu)))2

ϕ2(a)
− 1 +

α2

ϕ2(a)

+
2α

ϕ(a)

Re(ϕ(a + iu))

ϕ(a)


. (D.12)

By introducing the function

gα(x) =


x +

α
√

2

2

+
α2

2
− 1,

we deduce from (D.11) together (D.12) with β = α/ϕ(a) that

ϕ(a + iu) + α

2 = ϕ2(a)gβ


1 +


1 +

4c2u2

ϕ4(a)

 . (D.13)

Furthermore, one can easily check from straightforward calculations that for all x ≥
√

2,

gβ(x) ≥


(β + 1)2 if β ∈ [−2, 0],

1 otherwise.
(D.14)

Therefore, we infer from (D.13) and (D.14) that for all a ∈ ∆c and for all u ∈ R,ϕ(a + iu) + α

 ≥


|ϕ(a)||β + 1| if β ∈ [−2, 0],

|ϕ(a)| otherwise
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which clearly implies that

1
|ϕ(a + iu) + α|

≤
1

|ϕ(a)|
max


1,

|ϕ(a)|

|ϕ(a) + α|


. (D.15)

We shall make use of inequality (D.15) with α = θ and α = 2c − θ . One can observe that, as
long as a ∈ ∆c, the value of ϕ(a) + α ≠ 0. Finally, it follows from the conjunction of (D.8),
(D.9), (D.10), and (D.15) that for all a ∈ ∆c and for all u ∈ R,exp (H(a + iu) −H(a))

2 ≤
|ϕ(a + iu)|

|ϕ(a)|
max


1,

|ϕ(a) + θ |

|ϕ(a)|


× max


1,

|ϕ(a) + 2c − θ |

|ϕ(a)|


,

≤ ℓ(a, c, θ)


1 +

4c2u2

ϕ4(a)

1/4

which completes the proof of Lemma D.3. �

Lemma D.4. For T large enough, the functionRT given, for all z ∈ C, by

RT (z) = −
1
2

log


1 +
1 − h(z)
1 + h(z)

exp(2ϕ(z)T )


is differentiable on the domain DT,c. Moreover, for all (a, u) ∈ R2 such that a + iu ∈ DT,c, we
have exp(RT (a + iu) −RT (a))

2 ≤ 4. (D.16)

Proof of Lemma D.4. First of all, we deduce from (2.4) thatexp (RT (a + iu) −RT (a))

2 =

 1 + r(a) exp(2ϕ(a)T )

1 + r(a + iu) exp(2ϕ(a + iu)T )

 (D.17)

where the function r is given, for all z ∈ C, by

r(z) =
1 − h(z)
1 + h(z)

.

We already saw from (D.9) that

1 + h(z) =
(ϕ(z) + θ)(ϕ(z) + 2c − θ)

2cϕ(z)
.

Hence,

1 − h(z) =
(θ − ϕ(z))(ϕ(z) − 2c + θ)

2cϕ(z)

which implies that

|r(z)| =

ϕ(z) − θ

ϕ(z) + θ

 ϕ(z) − 2c + θ

ϕ(z) + 2c − θ

 . (D.18)
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Moreover, for all (a, u) ∈ R2 such that a + iu ∈ DT,c,r(a + iu) exp(2ϕ(a + iu)T )

2 = |r(a + iu)|2 exp(4Re(ϕ(a + iu))T ).

We recall from (D.11) that

Re(ϕ(a + iu)) =
ϕ(a)
√

2

1 +


1 +

4c2u2

ϕ4(a)
.

The key point here is that Re(ϕ(a + iu)) is always negative. Consequently, via the same lines as
in the proof of Lemma D.3, we obtain that for T large enough and for all (a, u) ∈ R2 such that
a + iu ∈ DT,c,r(a + iu) exp(2ϕ(a + iu)T )

 ≤
1
2
. (D.19)

Finally, (D.16) follows from (D.17) and (D.19). �
Proof of Lemma D.1. Lemma D.1 immediately follows from (D.3) together with the conjunc-
tion of Lemmas D.2–D.4. �
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