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Almost Sure Stabilization for Feedback Controls of
Regime-switching Linear Systems with A Hidden
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Abstract— This work is devoted to the almost sure stabilization
of adaptive control systems that involve an unknown Markov
chain. The control system displays continuous dynamics repre-
sented by differential equations and discrete events given by a
hidden Markov chain. In the previous investigation on this class
of problems, averaging criteria were used, which provides only
the system behavior in some expectation sense. A closer scrutiny
of the system behavior necessarily requires the consideration
of sample path properties. Different from previous work on
stabilization of adaptive controlled systems with a hidden Markov
chain, where average criteria were considered, this work focuses
on the almost sure stabilization or sample path stabilization of
the underlying processes. Under simple conditions, it is shown
that as long as the feedback controls have linear growth in the
continuous component, the resulting process is regular. Moreover,
by appropriate choice of the Lyapunov functions, it is shown
that the adaptive system is stabilizable almost surely. As a by-
product, it is also established that the controlled process is
positive recurrent.

Index Terms— Adaptive control, hidden Markov chain, almost
sure stabilization.

1. INTRODUCTION

THIS work deals with almost sure stabilization of a class
of adaptive control systems in continuous-time with an

unknown parameter process that is a hidden Markov chain.
The systems belong to the class of partially observed control
systems. Naturally, one estimates the parameter process by
using nonlinear filtering techniques and then uses the estimator
in the systems in order to design adaptive control strategies.
The motivation of our study stems from consideration of the
following problem. Consider the process

Ẋ(t) = Aα(t)X(t) + Bα(t)U(t)

where α(t) is a continuous-time Markov chain taking values
in a finite set M = {1, . . . ,m}, Ai and Bi for i ∈ M are
matrices with compatible dimensions, and U(t) is the control
process. One can observe that the system matrices are subject
to a random switching influence. At any given instance, these
coefficient matrices are chosen from a set M with a finite
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de Bordeaux, UMR 5251 and INRIA Bordeaux Sud-Ouest, Team CQFD,
351 cours de la Libération, 33405 Talence cedex, France. Email:
Francois.Dufour@math.u-bordeaux1.fr

G. Yin is with Department of Mathematics, Wayne State University, Detroit,
Michigan 48202. Email: gyin@math.wayne.edu

number of candidates. The selection rule is dictated by the
modulating switching process α(t) that jump changes from
one state to another at random times. Such systems have
enjoyed numerous applications in emerging application areas
as financial engineering, wireless communications, as well
as in existing applications. A particular important problem
concerns the asymptotic behavior of such systems when they
are in operations for a long time. Our interest lies in finding
admissible controls so that the resulting system will be almost
surely stabilized. An added difficulty is that the process X(t)
can only be observed with an additive noise

dX(t) = [Aα(t)X(t) + Bα(t)U(t)]dt + dW (t).

For such partially observed systems, it is natural to use
nonlinear filtering techniques. The associated filter is known
as the Wonham filter [25], which is one of a handful of finite
dimensional filters in existence. Note that under suitable condi-
tions, e.g., when the feedback control as a function of the state
x grows at most linearly in x, the above stochastic differential
equation with Markov switching has a unique solution almost
surely. The existence and uniqueness of Markov switching
diffusion is deemed to be well known, see for example,
[21, Theorem 3.15]. Earlier work on stochastic differential
equations with switching may be found in [24].

Having appealing and simple structures, linear quadratic
regulators have had numerous applications. The applications
on the other hand have stimulated further developments in
control and systems theory. As a result, there is a vast literature
on linear systems theory containing both time-honored results
and very recent progress on a wide range of related topics. For
example, some recent progress on continuous-time adaptive
controls and output-feedback stabilization can be found in [6],
[17] and references therein.

This paper is concerned with adaptive control systems with
a hidden Markov chain, which can be viewed as a stochastic
hybrid system. Our investigation is motivated by the previous
work on stabilization of such systems [2], [7], see also [1],
[9], [22] for some related control, estimation, and optimization
problems for hybrid systems. Emerging applications have
also been found in manufacturing systems [23], in which a
Markov chain is used to represent the capacity of an unreliable
machine, in wireless communication, where a Markov chain is
used to depict randomly time varying signals or channels. Ap-
plications have also been found in queueing systems, biologi-
cal systems, and financial and economic systems. For instance,
in financial engineering, a geometric Brownian motion model
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for a stock is frequently used. The well-known Markowitz’s
mean-variance portfolio selection is one of the linear stochastic
control problems. The traditional setup can be described by a
linear stochastic differential equation, where both the appreci-
ate rate and volatility are constants. Nevertheless, it has been
recognized that such a formulation is far from realistic. Very
often, there are additional randomness due to the variation of
interest rates, volatility, and other random environment factors.
For the mean-variance problem mentioned, some recent effort
has been on obtaining optimal portfolio selections when both
the appreciation rate and volatility depend on a Markov chain
[27]. For all of the applications mentioned above, practical
considerations often lead to the inclusion of unobservable
Markov chains. For some recent study of hidden Markov
chains, we refer the reader to [8] and references therein. Since
a Markov chain is frequently used to conveniently model
random environment changes and other factors that are not
representable as the usual continuous dynamics, treating adap-
tive controls, stability, and stabilization of adaptive systems
with a hidden Markov chain have significant impact on various
applications.

There have been continued interest in dealing with hybrid
systems under a Markov switching. In [22], stabilization for
robust controls of jump linear systems was investigated. In [9],
both controllability and stabilizability of jump linear systems
were considered. In a recent paper [4], based on the vanishing
discount approach to discounted functional of filtering process,
some ergodicity results were obtained. Stability under random
perturbations of Markov chain type can be traced back to the
work [11]. This line of work has been substantially expanded
to diffusion systems in [12], [14]. Recently, renewed interests
have been shown to deal with switching diffusions; see for
example [5], [13], [19], [20], [28] among others. These results
include stability as well as ergodicity of general switching
diffusion processes.

In many applications, one is mainly interested in if the
systems under consideration are stable. A widely recognized,
important task is to find control strategies so that the resulting
systems are stable in an appropriate sense. In the literature,
stabilization of continuous-time, adaptive control systems with
hidden Markov chains were considered in [2], [7]. In both of
these references, averaging criteria were used for the purpose
of stabilization. To be more precise, adaptive control strategies
were developed in [7] to make both the system and the control
have bounded second moment in the sense

lim sup
t→∞

E[|X(t)|2 + |U(t)|2] < ∞,

whereas adaptive controls were obtained in [2] to have the
second moments of the averages of both the system and control
bounded in the sense

lim sup
t→∞

1

t
E

[∫ t

0

[|X(s)|2 + |U(s)|2]ds

]
< ∞.

Using these criteria enables to stabilize the system in certain
expectation sense. A closer scrutiny of the system behavior
necessarily requires the consideration of sample path proper-
ties.

In comparison with the aforementioned references, it is a
worthwhile effort to examine the pathwise stabilization under
partial observations. Our aim is the almost sure stability of
the system in the sense of Definition 4.1. To this end, a log
quadratic Lyapunov function is introduced in equation (4.9)
to show that the feedback control law defined by (4.12) is
stabilizing. Just as in elementary probability theory, we need
to deal with different mode of convergence. Here, we focus
on the almost sure stability. Note that under averaging criteria,
a system is stabilizable but it may not be stabilizable for its
sample paths. To be of any practical use in applications, the
system resulting from an adaptive control law should not allow
wild behavior in the sample paths. That is, the system should
not have finite explosion time, which is known as regularity.
Thus, it is imperative to find sufficient conditions for non-
explosiveness or regularity. Owing to the use of adaptive
control strategies, known results in stability and stabilization
in Markov-modulated stochastic systems cannot be applied
directly. As a result, pathwise stabilization is more difficult
to deal with compared with that under averaging criteria. As
will be seen in later section, the feedback adaptive controls
render difficulty in analyzing the underlying systems. Certain
functions associated with the diffusion matrix in fact grow
faster than normally is allowed in the standard analysis. When
averaged criteria are used, this kind of difficulty will not show
up since by taking expectation, we can easily average out
the Brownian motion term. However, when pathwise criteria
are used, we can no longer use the argument based on using
expectations. Thus the consideration of pathwise stabilization
is both practically necessary and theoretically interesting.

For a practical system, no finite explosion time is a must.
Following the convention in the theory of stochastic processes,
a system without finite explosion time with probability one is
termed regular in this paper. Next, for a deterministic system
given by a differential equation, if the solutions are ultimately
uniformly bounded, then it is Lagrange stable. For stochastic
systems, almost sure boundedness excludes many useful cases
(for example, any systems perturbed by a white noise). Thus,
in lieu of such a boundedness, one seeks stability in certain
weak sense. Starting from a point outside of a compact set,
the system should be able to return to the set infinitely often
with probability one. Such a property is known as recurrence.
Note that the return time is random. For practical control
systems, the average (or expected) return time to the compact
set cannot be infinitely long otherwise the controlled system
is useless. We say that the process is positive recurrent if
the expected return time is finite. In fact, positive recurrence
was termed weak stability for diffusion processes in [26].
Both regularity and recurrence of adaptive control systems
can be viewed as “practical” stability conditions. To begin
our quest of finding admissible controls that stabilize the
systems almost surely, we examine if the controlled process
is regular. We establish regularity under feedback controls
with linear growth conditions. Then, we develop sufficient
conditions and admissible adaptive controls under which the
system is stabilizable. Moreover, as a by-product, we also
establish positive recurrence of the underlying processes as
a corollary of our stabilization result.
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The rest of the paper is organized as follows. Section 2
presents the problem setup while Section 3 is devoted to the
regularity of the underlying process. We show that, as long as
the feedback controls have linear growth, the resulting systems
is regular. Section 4 investigates the almost sure stability of
the process. Some numerical simulations are also provided. We
conclude the paper in Section 5 by some additional remarks.
All technical proofs are postponed to the appendices.

2. FORMULATION AND PRELIMINARY

A. Problem Setup

Denote by (Ω,A, P) a probability space with an associated
nondecreasing family of σ-algebras (Ft). Let α(t) be a
continuous-time Markov chain with a finite state space M =
{1, . . . ,m} and transition rate matrix Π = (πij) ∈ R

m×m,
and W (t) be a standard R

n-valued Brownian motion. In the
above and hereafter, A′ denotes the transpose of a matrix A,
|A| =

√
tr(AA′) is the trace norm of A, and |v| =

√
v′v is

the usual Euclidean norm of a vector v.
Assume throughout the paper that W (t) and α(t) are

independent. Let X(t) ∈ R
n and U(t) ∈ R

d be the state
and control processes, respectively. For i ∈ M, Ai ∈ R

n×n

and Bi ∈ R
n×d are matrices with appropriate dimensions.

Our main interest focuses on the following regime-switching
stochastic system

dX(t) = [Aα(t)X(t) + Bα(t)U(t)]dt + dW (t) (2.1)

with square integrable initial condition X(0) = x. As in [2],
[7], denoting the column vector of R

m of indicator functions
by

Φ(t) = (1I{α(t)=1)}, . . . , 1I{α(t)=m})
′

where 1IE stands for the usual indicator function of the event
E, we may present the dynamics of the Markov chain by

dΦ(t) = Π′Φ(t)dt + dM(t).

The process M(t) is an R
m-valued square integrable mar-

tingale with right continuous trajectories. The independence
of α(t) and W (t) implies that of Φ(t) and W (t). In all the
sequel, we also assume that x, Φ(t), and W (t) are mutually
independent.

One of the main features of the system considered here is
that the Markov chain under consideration is a hidden one. As
treated in [2], [7], the essence is that we are dealing with a
system (2.1) with unknown mode that switches back and forth
among a finite set at random times. But different from previous
consideration, we wish to establish the regularity of the process
and to find conditions ensuring almost sure stabilization. The
almost sure stabilization poses new challenges and difficulties
since we cannot average out the martingale term by means
of taking expectations. Compared with the aforementioned
papers, different techniques are needed. Here, the keystone
is to find a suitable Lyapunov function.

Remark 2.1: Throughout the paper, the process X(t) is
assumed to be observable, but this is not the case for the
switching process α(t). The problem belongs to the category
of controls with partial observations. Observing α(t) through

the adaptive control process with Gaussian white noise brings
us to the framework of Wonham filtering problems [25].

Definition 2.2: A feedback control U is said to be admis-
sible if for any t ≥ 0, U(t) is FX

t -measurable where the
σ-algebra FX

t is given by FX
t = σ{X(s), s ≤ t}.

We are now in position to state precisely the problem we wish
to investigate.

Our purpose is to study the following problem.
1) We analyze (2.1) and obtain conditions under which the

system will be regular. Hence, our goal is to propose
sufficient conditions ensuring the process will not have
finite explosion time. We show that, as long as the
feedback control U grows at most linearly as a function
of X , the resulting adaptive control system will be
regular.

2) We design admissible adaptive controls and provide
sufficient conditions that stabilize the closed-loop system
almost surely. Loosely, the sufficient condition ensures
that for almost all sample points, the corresponding
system will be stabilizable. The precise definition of
almost sure stabilization will be provided in the next
section.

B. Preliminary

As in [2], [7], we convert this partially observed system
to a control process with complete observation. It entails to
replace the hidden state Φ(t) by its estimator, namely the well-
known Wonham filter Φ̂(t). Using feedback control U(t) =
U(X(t), Φ̂(t)), we shall need the following notation

Φ̂i(t) = E[1I{α(t)=i}|FX
t ],

Φ̂(t) = (Φ̂1(t), . . . , Φ̂m(t))′ ∈ R
m,

C(X(t)) = (A1X(t) + B1U(t), . . . , AmX(t) + BmU(t)),

D(ϕ) = (diag(ϕ) − ϕϕ′) for ϕ ∈ R
m,

diag(ϕ) = diag(ϕ1, . . . , ϕm).
(2.2)

Denote also the innovation process by

dV (t) = dX(t) − C(X(t))Φ̂(t)dt.

Using nonlinear filtering techniques [16], we can convert the
partially observed control problem to a completely observable
system

(
dX(t)
dΦ̂(t)

)
=

(
C(X(t))Φ̂(t)

Π′Φ̂(t)

)
dt

+

(
In

D(Φ̂(t))C(X(t))′

)
dV (t),

(2.3)

where In stands for the identity matrix of order n. Note
that the above representation is easier to work with in the
subsequent analysis. To solve the equations, we begin with
the Wonham filtering equation. After Φ̂(t) being found, we
use it in the first equation. Under suitable conditions, e.g.,
linear feedback controls, the resulting stochastic differential
equation will have a unique solution in the almost sure sense.
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Remark 2.3: Before proceeding further, we shall make
a few remarks. The form C(X(t)) indicates the X(t)-
dependence. When the feedback control U(t) is of linear
form, it depends on X(t) linearly. This point will be used
in what follows. The equivalent and completely observable
system can be viewed as a controlled diffusion, in which the
usual diffusion term is replaced by

(
In

D(Φ̂(t))C(X(t))′

)

and the driven Brownian motion is given by V (t). When linear
feedback control is used, both the drift and diffusion grow at
most linearly, which is a useful observation. Since Φ̂(t) is the
probability conditioned on the observation, for each t ≥ 0 and
each i ∈ M, Φ̂i(t) ≥ 0 with

m∑

i=1

Φ̂i(t) = 1.

Denote the joint vector by Y (t) = (X(t), Φ̂(t))′ ∈ R
n+m.

In what follows, we often consider |Y (t)| ≥ r for some
r > 0, where |Y | is the usual Euclidean norm. Denote by
N(0; r) ∈ R

n+m the neighborhood centered at 0 with radius
r. Using the notation defined in (2.2) associated with the
stochastic differential equation (2.3), we define the following
operator. For each sufficiently smooth real-valued function
h : R

n+m/N(0; r) 7→ R, let

Lh(y) = Lh(x, ϕ)

=
(
∇h(x, ϕ)

)′
(

C(x)ϕ
Π′ϕ

)

+
1

2
tr
(
( In C(x)D(ϕ)′ )∇2h(x, ϕ) ( In C(x)D(ϕ)′ )

′ )

(2.4)
where ∇h and ∇2h are the gradient and Hessian of h,
respectively.

3. REGULARITY

First, let us recall the definition of regularity. According to
[12], the Markov process

Y (t) =

(
X(t)
Φ̂(t)

)

is regular, if for any 0 < T < ∞,

P

(
sup

0≤t≤T

|Y (t)| = ∞
)

= 0.

Roughly speaking, regularity ensures the process under con-
sideration will not have finite explosion time. For our adaptive
control systems, we proceed to show that under linear feedback
control, the systems is regular.

Theorem 3.1: Assume that the feedback control U(t) =
U(X(t), Φ̂(t)) is admissible and that for all t ≥ 0, |U(t)| ≤
K(1 + |X(t)|) for some K > 0. Then, the feedback control
system (2.3) is regular.

Remark 3.2: The condition above indicates that U(x, ϕ)
grows at most linearly in x. In fact, for our problem, we are
mainly interested in linear feedback controls in the variable x.
In this case, the linear growth condition is clearly satisfied.

Proof. Let Θ be an open set in R
n+m and denote O =

{
y =

(x, ϕ)′ ∈ Θ, ϕ = (ϕ1, . . . , ϕm) satisfying ϕi ≥ 0 for i ∈
M, and

∑m
i=1 ϕi = 1

}
. We first observe that both the

drift and the diffusion coefficient given in (2.3) satisfy the
linear growth and Lipschitz condition in every open set in
O ⊂ R

n+m. Thus, to prove the regularity, using the result in
[12], we only need to show that there is a nonnegative function
U which is twice continuously differentiable in Or = {y ∈
O, |y| > r} for some r > 0 with y = (x, ϕ)′ such that

inf
|y|>R

U(y) → ∞ as R → ∞, (3.1)

and that there is an γ > 0 satisfying

LU(y) ≤ γU(y). (3.2)

Thus, to verify the regularity of the process Y (t), all needed
is to construct an appropriate Lyapunov function U . Note that
we only need a Lyapunov function that is smooth and defined
in the complement of a sphere. Equivalently, we only need
the smoothness of the Lyapunov function to be in a deleted
neighborhood of the origin. To this end, take r = 1 and denote
by O1 the set

O1 =
{

y = (x, ϕ)′ ∈ R
n+m, |y| > 1 and ϕ = (ϕ1, . . . , ϕm)

satisfying ϕi ≥ 0 for i ∈ M, and
m∑

i=1

ϕi = 1
}

.

(3.3)
Define U : O1 7→ R as U(y) = |y|. It is easily checked that
condition (3.1) holds. Moreover, we have

∇
∣∣∣
(

x
ϕ

) ∣∣∣ =

(
x
ϕ

)

∣∣∣
(

x
ϕ

) ∣∣∣
,

and

∇2
∣∣∣
(

x
ϕ

) ∣∣∣ = In+m∣∣∣
(

x
ϕ

) ∣∣∣
−

(
xx′ xϕ′

ϕx′ ϕϕ′

)

∣∣∣
(

x
ϕ

) ∣∣∣
3

.

Consequently, it follows from (2.4) that

LU(x, ϕ) =
1

∣∣∣
(

x
ϕ

) ∣∣∣
(x′C(x)ϕ + ϕ′Π′ϕ)

+
1

2
∣∣∣
(

x
ϕ

) ∣∣∣
(n + tr(D(ϕ)C ′(x)C(x)D′(ϕ)))

− 1

2
∣∣∣
(

x
ϕ

) ∣∣∣
3

tr
(

( In C(x)D(ϕ)′ )

(
xx′ xϕ′

ϕx′ ϕϕ′

)

× ( In C(x)D(ϕ)′ )
′

)
.

(3.4)
Note that the set that we are working with is O1 defined in
(3.3). In particular, the use of O1 yields that for any y ∈
O1, |ϕ| is always bounded. We also note that owing to the
definition of C(x) and the linear growth feedback controls
used, C(x) is a function grows at mostly linearly in x. It
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follows that for the terms on the third line from bottom of
(3.4), for |(x, ϕ)′| large enough, there is a constant γ1 > 0,

1
∣∣∣
(

x
ϕ

) ∣∣∣

∣∣∣x′C(x)ϕ + ϕ′Π′ϕ
∣∣∣

≤ γ1∣∣∣
(

x
ϕ

) ∣∣∣

∣∣∣
(

x
ϕ

) ∣∣∣
2

≤ γ1

∣∣∣
(

x
ϕ

) ∣∣∣.

Likewise, for the next two terms, we have for some γ2 > 0,

1

2
∣∣∣
(

x
ϕ

) ∣∣∣

∣∣∣n + tr(D(ϕ)C ′(x)C(x)D′(ϕ))
∣∣∣ ≤ γ2

∣∣∣
(

x
ϕ

) ∣∣∣.

Combining the above estimates, we can deduce that for some
γ > 0,

LU(x, ϕ) ≤ γ
∣∣∣
(

x
ϕ

) ∣∣∣ = γU(x, ϕ).

Consequently, the second condition (3.2) is satisfied and the
regularity of the feedback control is established. �

4. STABILIZATION

In this section, we establish conditions under which the
system of interest is stabilizable in the almost sure sense. We
first present the definition and then proceed to find sufficient
conditions for stabilization.

Definition 4.1: System (2.1) or equivalently (2.3) is said to
be almost surely stabilizable if there is a feedback control law
U(t) such that the resulting trajectories satisfy

lim sup
t→∞

1

t
log |X(t)| ≤ 0 almost surely. (4.1)

Note that the definition given in (4.1) is natural. When
studying stability of stochastic differential equations, espe-
cially for pathwise stability, one uses the so-called qth-moment
Lyapunov exponent

lim sup
t→∞

1

t
log |X(t)|q

for some q > 0. Here, roughly, we require that under the
control law, the first-moment Lyapunov exponent is non-
positive.

A. Auxiliary Results

Before proceeding further, let us first recall a lemma, which
is concerned with the existence of the associated system of
Riccati equations when quadratic cost criteria are used. The
proof of the lemma is given in [10].

Lemma 4.2: Consider the system of Riccati equations

A′
iPi + PiAi − PiBiR

−1B′
iPi +

m∑

j=1

πijPj + Q = 0, i ∈ M,

(4.2)
where Q ∈ R

n×n is symmetric and positive semi-definite, and
R ∈ R

m×m is symmetric and positive definite. The system

(4.2) has a solution if and only if for each i ∈ M, there is a
matrix P i satisfying

A′
iP i + P iAi −P iBiR

−1B′
iP i +

m∑

j=1

πijP j + Q ≤ 0. (4.3)

Furthermore, if Q is positive definite, so are Pi for i ∈ M.
To carry out the analysis, we need some auxiliary results on

the bounds of the quadratic variation process. Before getting
the almost sure bounds, we examine the moment bounds for
certain related martingales, which turn out to be interesting in
their own right. The main ingredient is the use of properties
of the associated Markov chain.
Moment Bounds

Proposition 4.3: Consider the stochastic differential equa-
tion

dΦ̂(t) = Π′Φ̂(t)dt + D(Φ̂(t))C(X(t))′dV (t) (4.4)

and define the associate martingale

N(t) =

∫ t

0

D(Φ̂(s))C(X(s))′dV (s). (4.5)

Suppose that the Markov chain α(t) is irreducible. Then, for
some positive constant K independent of t,

E

[
1

t
|N(t)|2

]
≤ K. (4.6)

Proof. The proof is given in Appendix A. �

Remark 4.4: It follows from the proof of Proposition 4.3
that the limit of the matrix

S = lim
t→∞

1

t

∫ t

0

∫ t

0

Π′[Φ̂(u) − ν][Φ̂(s) − ν]′Πduds

is finite. Clearly, this matrix is symmetric and positive semi
definite. A moment of reflect reveals that we can further prove
the asymptotic normality in that as t → ∞,

1√
t

∫ t

0

Π′[Φ̂(s)− ν]ds converges in distribution to N (0, S).

That is, a normalized sequence defined on the left-hand side
above converges in distribution to a normal random vector
with mean 0 and covariance S.

Another ramification is that in lieu of considering the
second-moment bounds, we can deal with qth-moment bounds.
In fact, using the same techniques, we can show that for any
integer p > 0,

E

[∣∣∣∣
1√
t

∫ t

0

Π′[Φ̂(s) − ν]ds

∣∣∣∣
2p
]

< ∞.

Hence, as the solution of (4.4) is given by

Φ̂(t) = Φ̂(0) +

∫ t

0

Π′Φ̂(s)ds + N(t)

which means that

N(t) = Φ̂(t) − Φ̂(0) −
∫ t

0

Π′Φ̂(s)ds,
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we obtain that

E

[∣∣∣∣
1√
t
N(t)

∣∣∣∣
2p
]

< ∞.

Next, for odd exponents and for any integer p ≥ 1, it follows
from Hölder’s inequality that
(

E

[∣∣∣∣
1√
t
N(t)

∣∣∣∣
2p−1

])2p

≤
(

E

[∣∣∣∣
1√
t
N(t)

∣∣∣∣
2p
])2p−1

< ∞.

Finally, we conclude that for any positive integer q,

E

[∣∣∣∣
1√
t
N(t)

∣∣∣∣
q]

< ∞.

Almost Sure Bounds
For the almost sure stabilization, we need to show that the

quadratic variation of N(t) satisfies
1

t

〈
N,N

〉
t
≤ K a.s.

for some K > 0 independent of t.
Proposition 4.5: Consider (4.4) and suppose that the

Markov chain α(t) is irreducible. Then, the quadratic variation
of the process N(t) satisfies

〈
N,N

〉
t
≤ Kt where K is some

positive constant independent of t. Therefore,

lim
t→∞

1

t
N(t) = 0 a.s. (4.7)

Proof. The proof is given in Appendix B. �

B. Stabilization
Lemma 4.6: Consider the set ∆ defined by

∆ =
{

(x, ϕ) ∈ R
n × R

m, ϕ = (ϕ1, . . . , ϕm)

satisfying ϕi ≥ 0 and
m∑

i=1

ϕi = 1
}

.

Denote

P (ϕ) =
m∑

i=1

Piϕi. (4.8)

For some θ > 0, let Vθ(x, ϕ) : ∆ 7→ R with

Vθ(x, ϕ) = log(θ + x′P (ϕ)x). (4.9)

Then, we have

LVθ(x, ϕ) =
1

θ + x′P (ϕ)x

(
2x′P (ϕ)C(x)ϕ + (x′P̃ x)′Π′ϕ

)

+
1

θ + x′P (ϕ)x
tr
(

P (ϕ) + 2C(x)D(ϕ)′x′P̃

)

− 1

2(θ + x′P (ϕ)x)2

×tr
((

In, C(x)D(ϕ)′
)
Λ(x, ϕ)

(
In, C(x)D(ϕ)′

)′)
,

(4.10)
where

Λ(x, ϕ) =

(
2P (ϕ)x
x′P̃ x

)(
2P (ϕ)x
x′P̃ x

)′

,

P = (P1, . . . , Pm)′, x′P̃ x = (x′P1x, . . . , x′Pmx)′ ∈ R
m,

Px = (P1x, . . . , Pmx) ∈ R
n×m, x′P̃ = (P̃ x)′ ∈ R

m×n.

Proof. We have

∇ log(θ + x′P (ϕ)x) =

(
2P (ϕ)x
x′P̃ x

)

θ + x′P (ϕ)x

and

∇2 log(θ + x′P (ϕ)x)

= −

(
2P (ϕ)x
x′P̃ x

)(
2P (ϕ)x
x′P̃ x

)′

(θ + x′P (ϕ)x)2
+

2

(
P (ϕ) P̃ x
x′P̃ 0m

)

θ + x′P (ϕ)x
,

where 0m stands for a square matrix of order m with all entries
equal to zero. Consequently, it follows from (2.4) that

LVθ(x, ϕ) =
1

θ + x′P (ϕ)x

(
2x′P (ϕ)C(x)ϕ + (x′P̃ x)′Π′ϕ

)

+
1

2
tr
((

In , C(x)D(ϕ)′
)
∇2Vθ(x, ϕ)

(
In , C(x)D(ϕ)′

)′)
,

(4.11)
which immediately implies (4.10). �

For the purpose of stabilization, we also need an estimate
on LVθ(X(t), Φ̂(t)).

Lemma 4.7: Assume that equation (4.3) is satisfied and that

Q − 1

2

[
PiBi − PjBj

]
R−1

[
PiBi − PjBj

]′

are positive definite matrices for all (i, j) ∈ M2 where Pi

for i ∈ M are the solutions of the algebraic Riccati equations
given by (4.2). Then, the infinitesimal generator of the process
(X(t), Φ̂(t)) associated with the feedback control law

U(t) = −R−1
m∑

i=1

Φ̂i(t)B
′
iPiX(t), (4.12)

satisfies for some constant γ > 0,

LVθ(X(t), Φ̂(t)) ≤ γ

θ
. (4.13)

Proof. We can deduce from Lemma 4.6 that

LVθ(X(t), Φ̂(t))

≤ 1

θ + X(t)′P (Φ̂(t))X(t)
(2X(t)′P (Φ̂(t))C(X(t))Φ̂(t))

+
1

θ + X(t)′P (Φ̂(t))X(t)
((X(t)′P̃X(t))′Π′Φ̂(t))

+
1

θ + X(t)′P (Φ̂(t))X(t)

tr
(
P (Φ̂(t)) + 2C(X(t))D(Φ̂(t))′X(t)′P̃

)
.

Therefore, following exactly the same lines as in [7], we obtain

LVθ(X(t), Φ̂(t)) ≤ − 1

θ + X(t)′P (Φ̂(t))X(t)

(
X(t)′

[
Q

−
m∑

i=1

m∑

j=1

Φ̂i(t)Φ̂j(t)

2

[
PiBi − PjBj

]
R−1

[
PiBi − PjBj

]′

+
( m∑

j=1

Φ̂j(t)B
′
jPj

)′
R−1

( m∑

i=1

Φ̂i(t)B
′
iPi

)]
X(t) − tr(P (Φ̂(t)))

)
.

Finally,

LVθ(X(t), Φ̂(t)) ≤ 1

θ

m∑

i=1

tr(Pi)
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which completes the proof of Lemma 4.7. �

Theorem 4.8: Assume that the conditions of Lemma 4.7 are
satisfied. Then, the feedback control law defined in equation
(4.12) stabilizes system (2.3) almost surely.

Proof. It follows from Ito’s rule that

Vθ(X(t), Φ̂(t)) = Vθ(x, ϕ) +

∫ t

0

LVθ(X(s), Φ̂(s))ds + M(t)

(4.14)
with the initial condition X(0) = x and Φ̂(0) = ϕ and the
martingale term

M(t) =

∫ t

0

Σ(s)dV (s)

where

Σ(s) =
1

Θ + X(s)′P (Φ̂(s))X(s)

×(2X(s)′P (Φ̂(s)), (X(s)′P̃X(s))′)

(
In

D(Φ̂(s))C(X(s))′

)
,

=
1

θ + X(s)′P (Φ̂(s))X(s)

×
(
2X(s)′P (Φ̂(s)) + (X(s)′P̃X(s))′D(Φ̂(s))C(X(s))′

)
.

We can split the martingale M(t) into two terms, M(t) =
N1(t) + N2(t) with

N1(t) =

∫ t

0

2X(s)′P (Φ̂(s))

θ + X(s)′P (Φ̂(s))X(s)
dV (s),

N2(t) =

∫ t

0

(X(s)′P̃X(s))′

θ + X(s)′P (Φ̂(s))X(s)

×D(Φ̂(s))C(X(s))′dV (s).

It is easy to see that

4X(t)′P (Φ̂(t))P (Φ̂(t))X(t)

(θ + X(t)′P (Φ̂(t))X(t))2
≤ K1

where K1 = m
θ

maxi∈M(λmax(Pi)). Then, the quadratic vari-
ation of N1(t) satisfies

〈
N1, N1

〉
t
≤ K1t a.s. Consequently,

we deduce from the strong law of large numbers for local
martingales [15] that

lim
t→∞

1

t
N1(t) = 0 a.s. (4.15)

In view of Proposition 4.5, one can also find a positive constant
K2, independent of t, such that

〈
N2, N2

〉
t

=

∫ t

0

|X(s)′P̃X(s)|2
(θ + X(s)′P (Φ̂(s))X(s))2

×|D(Φ̂(s))C(X(s))′|2ds ≤ K2t a.s.
(4.16)

It also ensures that

lim
t→∞

1

t
N2(t) = 0 a.s. (4.17)

Therefore, (4.15) and (4.17) imply that

lim
t→∞

1

t
M(t) = 0 a.s. (4.18)

Thus, we find from (4.14) that

1

t
Vθ(X(t), Φ̂(t)) =

1

t
Vθ(x, ϕ)+

1

t

∫ t

0

LVθ(X(s), Φ̂(s))ds+o(1) a.s.

Moreover, Vθ(x, ϕ)/t = o(1) as t → ∞ a.s. By virtue of
Lemma 4.7, it follows that for all θ > 0

lim sup
t→∞

1

t
Vθ(X(t), Φ̂(t))

= lim sup
t→∞

1

t

∫ t

0

LVθ(X(s), Φ̂(s))ds ≤ γ

θ
a.s.

(4.19)

Furthermore, one can observe that x′P (ϕ)x ≥
λmin(P (ϕ))|x|2 and since P (ϕ) is positive definite, the
minimal eigenvalue of P (ϕ) is positive. Consequently,

log(λmin(P (ϕ))) + 2 log(|x|) ≤ log(θ + λmin(P (ϕ))|x|2)
≤ log(θ + x′P (ϕ)x)

which leads to
1

t

(
log(λmin(P (Φ̂(t)))) + 2 log(|X(t)|)

)
≤ 1

t
Vθ(X(t), Φ̂(t)).

(4.20)
Finally, we conclude from (4.19) and (4.20) that for all θ > 0,

lim sup
1

t
log |X(t)| ≤ γ

2θ
a.s.

We complete the proof of Theorem 4.8 by taking the limit as
θ tends to infinity. �

Remark 4.9: Normally, dealing with stochastic differential
equations, to obtain the almost sure bounds of the solutions,
one often relies on the use of appropriate Lyapunov functions
to have the diffusion term of the process be bounded after a
transformation. Here, we are dealing with a martingale term
with some what faster rate of growth in x. Nevertheless,
thanks to the second component of the diffusion (4.4), the
probabilistic meaning of Φ̂(t) enables us to work around the
obstacle. To obtain the desired bounds, an alternative is to
obtain an almost sure central limit theorem. Here however,
we take a different approach. The main point is the use of
Proposition 4.5.

Recall the notion of recurrence for the diffusion process
(X(t), Φ̂(t)) starting at X(0) = x and Φ̂(0) = ϕ. Consider
an open set O with compact closure, and let

σx,ϕ
O = inf

{
t > 0, (X(t), Φ̂(t)) ∈ O

}

be the first entrance time of the diffusion to the set O, where
σx,ϕ

O signifies the dependence on the initial data (x, ϕ) as well
as on the set O. If (X(t), Φ̂(t)) is regular, it is recurrent with
respect to O if P{σx,ϕ

O < ∞} = 1 for any (x, ϕ) ∈ Oc,
where Oc is the complement of O. A recurrent process with
finite mean recurrence time for some set O, is said to be
positive recurrent with respect to O, otherwise, the process
is null recurrent with respect to O. It has been proven in [12]
that recurrence and positive recurrence are independent of the
set O chosen. Thus, if it is recurrent (resp. positive recurrent)
with respect to D, then it is recurrent (resp. positive recurrent)
with respect to any other open set Θ in the domain of interest.
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Looking over the proof of the stabilization presented, we could
show that for the Lyapunov function

V0(x, ϕ) = log(x′P (ϕ)x),

one can find γ > 0 such that for all (x, ϕ) ∈ Oc,

LV0(x, ϕ) ≤ −γ. (4.21)

In view of the known result of positive recurrence of diffusion
processes [12], (4.21) is precisely a necessary and sufficient
condition for positive recurrence. Thus, we obtain the follow-
ing result as a by-product.

Corollary 4.10: Under the conditions of Theorem 4.8, with
the control law (4.12) used, the diffusion systems (2.3) is
positive recurrent.

We would like to add that the positive recurrence of the
process is an important property. It has engineering implication
for various applications. Essentially, it ensures that starting
from a point outside of a bounded set, the control laws enables
the system to return to a compact set almost surely. This
may be viewed as a practical stability condition. In fact,
Wonham used the term weak stability for such a property in
his paper [26]. Dealing with diffusions, it was proved in [12]
that positive recurrence leads to ergodicity. Treating switching
diffusions with state-dependent switching, positive recurrence
leading to ergodicity together with the characterization of the
ergodic measures was provided in [28]. In our case, using the
result of [12], positive recurrence also yields ergodicity.

C. An Illustrative Example

Our goal is to illustrate Theorem 4.8 by numerical simula-
tions. This example is taken from [7]. The state process takes
values in R

2 and the control process is scalar which means
that n = 2 and d = 1. There are two modes with the generator

or transition rate matrix Π given by Π =


 −8 8

0.4 −0.4


 .

In mode 1, the plant is governed by A1 =


 −1 −1

0 2


,

B1 =


 0

1


 , while, in mode 2, by A2 =


 −1 1

0 −1


,

B2 =


 0

−1


 . The weighting matrices of the coupled

Riccati equations are chosen as Q = I2 and R = 10. One
can check that the matrices P 1 = 100I2 and P 2 = 50I2

verify equation (4.3). The coupled Riccati equations then
admit a unique solution which can be solved numerically by
the algorithm proposed in [10]. We find that

P1 =


 0.4976 0.1868

0.1868 1.8361


 P2 =


 0.4974 0.2299

0.2299 0.8819




It is easy to verify that, as required in Lemma 4.7, the matrix

Q − 1

2
(P1B1 − P2B2)R

−1(P1B1 − P2B2)
′

is definite positive. The following figures show that the feed-
back control U(t) defined by (4.12) can be applied to stabilize
this system almost surely in the sense of equation (4.1). Figure
1 shows a sample path of log |X(t)|/t where t runs over the
interval (0, T ) with T = 500, while Figure 2 is the zoom of
this sample path. Our numerical results show that the feedback
control U(t) performs well and that the system is almost surely
stabilizable.

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40
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60

70

80

90

Fig. 1. Almost sure stability: A sample path of log |X(t)|/t vs t; horizontal
axis represents t and vertical axis plots log |X(t)|/t

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4
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8
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Fig. 2. Zoom of the almost sure stability: A sample path of log |X(t)|/t vs
t; horizontal axis represents t and vertical axis plots log |X(t)|/t

5. FURTHER REMARKS

This paper has been concerned with stabilization in the
almost sure sense of an adaptive control system with linear
dynamics modulated by an unknown Markov chain. Under
the framework of Wonham filtering, the underlying system
is converted to a fully observable system. Using a feedback
control that is linear in the continuous state variable, we
establish pathwise stabilization of the process. Along the way
of our study, we have also obtained regularity of the underlying
process. In addition, as a corollary, we have shown that under
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the stabilizing control law, the resulting system is positive
recurrent. These results pave a way for practical consideration
of stabilization of adaptive controls of linear systems with a
hidden Markov chain. Several directions may be worthwhile
for further study and investigation.

• In our study, irreducibility of the Markov chain is used.
We note that the irreducibility ensures the spectrum gap
condition or exponential decay in (A.6) and (A.9) of
Proposition 4.3 to hold. It will be interesting to see if it
is possible to remove this condition. Our initial thoughts
are: Under certain conditions, this might be possible.
For example, if the Markov chain has several irreducible
classes such that the states in each class vary rapidly, and
among different classes, they change slowly. One may
be able to use the different time scales to overcome the
difficulty under the framework of time-scale separation
using a singular perturbation approach. However, the
details on this need to be thoroughly worked out; they
are in fact out of the scope of the current paper.

• A related problem of considerable interest is to develop
optimal controls under partial observation for a long-run
quadratic cost functional. So far there have been various
attempts to deal with these and related issues partially
observed stochastic control problems. To the best of our
knowledge, the problem is largely open. Moreover, it is
far form obvious that the proposed stabilizing control
law defined in (4.12) would be optimal for a long-run
quadratic cost functional. As normally is the case that
stabilization and optimal controls are treated separately
in the literature, the related optimal controls for the
partially observed systems involving a hidden Markov
chain require different techniques, careful thoughts, and
further investigations.

• It will be interesting to design admissible controls and
find sufficient conditions for stabilization of linear sys-
tems with a hidden Markov in discrete-time.

• In our setup, the process X(t) represents the noisy
observation–hidden Markov chain observed in white
noise. A class of controlled regime-switching diffusion
systems provides a somewhat more complex setup. In
such a system, the dynamics are represented by switching
diffusions with a hidden Markov chain. The Markov
chain is not observable but can only be observed in
another Gaussian white noise. That is, let us consider
the controlled system

dY (t) = [Aα(t)Y (t) + Bα(t)U(t)]dt + σα(t)dV (t)

dX(t) = gα(t)dt + ρ(t)dW (t),
(5.1)

where Y (t) and X(t) are vector-valued processes with
compatible dimensions representing the state and obser-
vations, respectively, V (t) and W (t) are independent
multi-dimensional Brownian motions, and α(t) is the
hidden Markov chain with a finite state space. As was
alluded to in the introduction, one of the motivations is
Markowitz’s mean-variance portfolio selections [27]. One
may then pose similar stabilization problems.

• Recently, using regime-switching jump diffusions, which
are switching diffusions with additional external jumps
of a compound Poisson process, for modeling surplus
in insurance risk has drawn much attention. A related
problem in the adaptive setup is a regime-switching jump
diffusion system in which the hidden Markov chain is
observed similar to the observation in (5.1). One may
then proceed with the study of stabilization problems.

• In the study of stabilization, positive definiteness of
certain matrices is used (see Lemma 4.2). A challenging
problem is to investigate the stabilization problem with
the positive definiteness removed for the system given
by (5.1). Here, the crucial point seems to rely on recent
developments in linear quadratic control problems with
indefinite control weights [3]. One needs to use the back-
ward stochastic differential equations from the toolbox of
stochastic analysis.

All of these problems deserve careful study and investiga-
tion. They open up new domains for further investigations.

APPENDIX A

This appendix is devoted to the proof of Proposition 4.3. It
is divided into several steps.
Step 1. We already saw that the solution (4.4) is given by

Φ̂(t) = Φ̂(0) +

∫ t

0

Π′Φ̂(s)ds + N(t).

Consequently

N(t) = Φ̂(t) − Φ̂(0) −
∫ t

0

Π′Φ̂(s)ds. (A.1)

In view of (A.1), the probabilistic interpretation of Φ̂(t)
implies that N(t) is a martingale bounded almost surely for
each t > 0. We proceed to obtain the moment bounds of N(t).
Step 2. As Π is the generator of the irreducible Markov chain
α(t), its unique stationary distribution ν satisfies Π′ν = 0.
Hence, it follows that

∫ t

0

Π′Φ̂(s)ds =

∫ t

0

Π′(Φ̂(s) − ν)ds.

From (4.5), we have

E[|N(t)|2] = E

[∫ t

0

|D(Φ̂(s))C(X(s))′|2ds

]
. (A.2)

On the other hand, we deduce from (A.1) that

1

t
E[|N(t)|2] =

1

t
E

[∣∣∣Φ̂(t) − Φ̂(0) −
∫ t

0

Π′(Φ̂(s) − ν)ds
∣∣∣
2
]

≤ 2

t
E

[
|Φ̂(t) − Φ̂(0)|2

]
+

2

t
E

[∣∣∣
∫ t

0

Π′(Φ̂(s) − ν)ds
∣∣∣
2
]

,

≤ 2

t
+

2

t
E

∫ t

0

∫ t

0

tr{Π′Π(Φ̂(r) − ν)(Φ̂′(s) − ν′)}drds.

(A.3)
Consider the symmetric matrix

G(r, s) = (gij(r, s)) = E[(Φ̂(r) − ν)(Φ̂′(s) − ν′)].
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One can observe that

gij(r, s) = E[(Φ̂(r) − ν)i(Φ̂
′(s) − ν′)j ],

= E[(E[1I{α(r)=i}|FX
r ] − νi)(E[1I{α(s)=j}|FX

s ] − νj)],

= E[E[1I{α(r)=i}|FX
r ]E[1I{α(s)=j}|FX

s ]]

−νjE[E[1I{α(r)=i}|FX
r ]]

−νiE[E[1I{α(s)=j}|FX
s ]] + νiνj ,

= E[E[1I{α(r)=i}|FX
r ]E[1I{α(s)=j}|FX

s ]] − νjP(α(r) = i)

−νiP(α(s) = j) + νiνj .
(A.4)

Note also by the Fubini Theorem that

1

t

∫ t

0

∫ t

0

gij(r, s)drds

=
1

t

(∫ t

0

∫ t

r

gij(r, s)drds +

∫ t

0

∫ r

0

gij(r, s)drds

)
,

=
1

t

∫ t

0

(∫ t

r

gij(r, s)ds

)
dr +

1

t

∫ t

0

(∫ t

s

gij(r, s)dr

)
ds,

= g1(t) + g2(t) = 2g1(t).

We have the decomposition

g1(t) = h1(t) + `1(t)

where

h1(t) =
1

t

∫ t

0

(∫ t

r

h(r, s)ds

)
dr,

`1(t) =
1

t

∫ t

0

(∫ t

r

νi(νj − P(α(s) = j))ds

)
dr,

with

h(r, s) = P(α(r) = i)P(α(s) = j|α(r) = i) − νjP (α(r) = i).

Before proceeding further, let us first note the following
mixing properties regarding the Markov chain α(t). For all
t ≥ 0 and s ≤ t, denote

p(t) = (P(α(t) = 1), . . . , P(α(t) = m))′ ∈ R
m,

P (t, s) = ((P(α(t) = j|α(s) = i), i, j ∈ M) ∈ R
m×m,

which are the probability vector and transition matrix of the
Markov chain α(t), respectively. Since α(t) is irreducible, it
is ergodic. Consequently, as t goes to infinity, for the solution
of the system 




dp(t)

dt
= Π′p(t)

p(0) = p0

(A.5)

satisfying

p0,i ≥ 0 and
m∑

i=1

p0,i = 1,

one can find two positive constants κ and K such that p(t) →
ν and

|p(t) − ν| ≤ K exp(−κt) (A.6)

By virtue of (A.6), it is easily seen that

|`1(t)| =

∣∣∣∣
νi

t

∫ t

0

(∫ t

r

(νj − P(α(s) = j))ds

)
dr

∣∣∣∣ ,

≤ νi

t

∫ t

0

(∫ t

u

|νj − P(α(s) = j)|ds

)
dr,

≤ νiK

t

∫ t

0

(∫ t

r

exp(−κs)ds

)
dr,

≤ νiK

κt

∫ t

0

exp(−κr)dr,

≤ νiK

κ2t
.

(A.7)

Consequently, `1(t) goes to zero as t tends to infinity. Next,
we shall show that h1(t) is bounded. As before, the solution
of the system





∂P (t, s)

∂t
= Π′P (t, s)

P (s, s) = Im

(A.8)

with s ≤ t, also satisfies for two positive constants λ and K,
P (t, s) → 11ν′ and

|P (t, s) − 11ν′| ≤ K exp(−λ(t − s)). (A.9)

It follows from (A.9) that

|h1(t)|

=

∣∣∣∣
1

t

∫ t

0

P(α(r) = i)

(∫ t

r

(P(α(s) = j|α(r) = i) − νj)ds

)
dr

∣∣∣∣

≤ 1

t

∫ t

0

(∫ t

r

|P(α(s) = j|α(r) = i) − νj |ds

)
dr

≤ K

t

∫ t

0

(∫ t

r

exp(−λ(s − r))ds

)
dr

≤ K

λt

∫ t

0

dr ≤ K

λ
.

Therefore, h1(t) as well as g1(t) are bounded sequences which
ensures that for some positive constant K independent of t
∣∣∣∣E
[
1

t

∫ t

0

∫ t

0

tr{Π′Π(Φ̂(r) − ν)(Φ̂′(s) − ν′)}drds

]∣∣∣∣ ≤ K.

(A.10)
Finally, (A.2) together with (A.3) and (A.10) imply (4.6) which
completes the proof of Proposition 4.3. �

APPENDIX B
We shall now focus on the proof of Proposition 4.5. First

of all, we know that

sup
t≥0

|Π′Φ̂(t)| ≤ 1 a.s.

In addition, we also have |Φ̂(t)| ≤ 1 a.s. Consequently, it
follows from (A.1) that

|N(t)| ≤ |Φ̂(t) − Φ̂(0)| +
∣∣∣∣
∫ t

0

Π′Φ̂(s)ds

∣∣∣∣ ≤ 1 + t a.s.

(B.1)
For each i ∈ M, denote

Ni(t) =

∫ t

0

n∑

j=1

[D(Φ̂(s)C(X(s))′]ijdVj(s)
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where [D(Φ̂(s)C(X(s))′]ij is the ijth entry of the matrix
D(Φ̂(s))C(X(s))′ and Vj(s) stands the jth component of
V (s). It follows from the well-known Doob’s martingale
inequality given for example in [18, Theorem 1.7.4, p. 44]
that for each i ∈ M and each positive integer n,

P

(
sup

0≤t≤n

∣∣∣∣
∫ t

0

Ni(t) − |(D(Φ̂(s))C(X(s))′)i,.|2ds

∣∣∣∣ ≥ log n
)

≤ 1

n2
,

(B.2)
where (D(Φ̂(s)C(X(s))′)i,. denotes the row vector in the ith
row of the matrix D(Φ̂(s)C(X(s))′. Hence, we deduce from
the Borel-Cantelli Lemma that for almost all ω ∈ Ω, there is
a K1 = K1(ω) > 1 such that for all n ≥ K1 and t ≤ n

∫ t

0

|(D(Φ̂(s)C(X(s))′)i,.|2ds ≤ log n + Ni(t) a.s.

≤ log n + 1 + t a.s.
(B.3)

The last line above follows from (B.1). Dividing both sides of
(B.3) by t, we obtain that for n ≥ K2, n − 1 ≤ t ≤ n, so

1

t

∫ t

0

|(D(Φ̂(s)C(X(s))′)i,.|2ds

≤ 1

n − 1
(log n + 1 + t) a.s.

≤ 1

n − 1
(log n + 1 + n) a.s.

≤ K3 a.s.

(B.4)

and the bound K3 is independent of t. Consequently, for some
positive constant K independent of t, the quadratic variation of
the martingale is bounded by Kt almost surely. That is, (B.4)
implies that

〈
N,N

〉
t
≤ Kt a.s. Finally, we deduce from the

strong law of large numbers for local martingales [15] that

lim
t→∞

1

t
N(t) = 0 a.s.

which concludes the proof of Proposition 4.5. �
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