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AN EFFICIENT STOCHASTIC NEWTON ALGORITHM FOR
PARAMETER ESTIMATION IN LOGISTIC REGRESSIONS∗

BERNARD BERCU† , ANTOINE GODICHON‡ , AND BRUNO PORTIER§

Abstract. Logistic regression is a well-known statistical model which is commonly used in the
situation where the output is a binary random variable. It has a wide range of applications including
machine learning, public health, social sciences, ecology, and econometry. In order to estimate
the unknown parameters of logistic regression with data streams arriving sequentially and at high
speed, we focus our attention on a recursive stochastic algorithm. More precisely, we investigate
the asymptotic behavior of a new stochastic Newton algorithm. It enables us to easily update the
estimates when the data arrive sequentially and to have research steps in all directions. We establish
the almost sure convergence of our stochastic Newton algorithm as well as its asymptotic normality.
All our theoretical results are illustrated by numerical experiments.
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1. Introduction. Logistic regression is a well-known statistical model arising
from the optimization theory of discrete-time stochastic systems, which is commonly
used in the situation where the output is a binary random variable. It has a wide
range of applications including machine learning [1], public health [12], social sciences,
and ecology [9]. In what follows, we will consider a sequence (Xn, Yn) of random
variables taking values in Rd × {0, 1}, and we will assume that (Xn) is a sequence of
independent and identically distributed random vectors such that, that for all n > 1,
the conditional distribution of Yn knowing Xn is a Bernoulli distribution [8]. More
precisely, let θ = (θ0, . . . , θd)

T be the unknown parameter belonging to Rd+1 of the
logistic regression. For all n > 1, we denote Φn = (1, XT

n )T and we assume that

L
(
Yn|Φn

)
= B

(
π(θTΦn)

)
, where π(x) =

exp(x)

1 + exp(x)
.

Our goal is the estimation of the vector of parameters θ. For that purpose, let G be
the convex positive function defined, for all h ∈ Rd+1, by

G(h) = E
[
− log

(
π(hTΦ)Y

(
1− π(hTΦ)

)1−Y )]
= E

[
log
(
1 + exp(hTΦ)

)
− hTΦY

]
,

where L(Y |Φ) = B
(
π(θTΦ)

)
and Φ shares the same distribution as Φ1. We clearly

have E [Y |Φ] = π(θTΦ). Hence, one can easily check that the unknown parameter θ
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satisfies

(1.1) ∇G(θ) = E
[
Φ(π(θTΦ)− Y )

]
= 0.

Consequently, under some standard convexity assumptions on G,

(1.2) θ = arg min
h∈Rd+1

G(h).

Since there is no explicit solution of the equation ∇G(h) = 0, we are facing a standard
optimization problem and several tools have been developed in order to estimate θ
such as stochastic gradient and Newton algorithms. Nevertheless, in our case, the
gradient and the Hessian matrix of the function to minimize cannot be explicitly
evaluated. However, for high-frequency data arriving sequentially, we can propose ef-
ficient empirical estimators of the gradient and the Hessian matrix in order to estimate
the parameter θ. We refer the reader to the seminal paper on the Robbins–Monro
algorithm [16] and to its averaged version [10, 15, 17], as well as to the more re-
cent contributions on the logistic regression [1, 6, 5]. One can observe that in these
last references, the conditional distribution L(Y |Φ) = R

(
π(θTΦ)

)
is the Rademacher

distribution, instead of the usual Bernoulli B
(
π(θTΦ)

)
one.

In this paper, we propose an alternative strategy to stochastic gradient algorithms,
in the spirit of the Newton algorithms. To be more precise, the step sequence of the
stochastic gradient algorithm is replaced by a recursive estimate of the inverse of the
Hessian matrix of the function we are minimizing, leading to a stochastic Newton
type algorithm. This strategy enables us to properly deal with the situation where
the Hessian matrix has eigenvalues with significantly different absolute values. Indeed,
in that case, it can be necessary to adapt automatically the step of the algorithm in
all directions. To be more precise, we propose to estimate the unknown parameter θ
with the help of a stochastic Newton algorithm given, for all n > 1, by

an = π(θTn−1Φn)
(
1− π(θTn−1Φn)

)
,

S−1
n = S−1

n−1 − an(1 + anΦTnS
−1
n−1Φn)−1S−1

n−1ΦnΦTnS
−1
n−1,

θn = θn−1 + S−1
n Φn

(
Yn − π(θTn−1Φn)

)
,

where the initial value θ0 is a bounded vector of Rd+1 which can be arbitrarily chosen
and S0 is a positive definite and deterministic matrix. For the sake of simplicity and
in all the following, we take S0 = Id+1, where Id+1 stands for the identity matrix of
order (d+ 1). One can observe that

Sn =

n∑
k=1

akΦkΦTk + Id+1.

Moreover, S−1
n is updated recursively, thanks to Riccati’s equation ([4, page 96])

which enables us to avoid the useless inversion of a matrix at each iteration of the
algorithm. Furthermore, the matrix n−1Sn is an estimate of the Hessian matrix
∇2G (θ) at the unknown value θ. In order to ensure the convergence of the stochastic
Newton algorithm, a modified version of this algorithm is provided. We shall prove its
asymptotic efficiency by establishing its almost sure convergence and its asymptotic
normality.

This algorithm is closely related to the iterative one used to estimate the unknown
vector θ of a linear regression model satisfying, for all n > 1, Yn = θTΦn + εn. As a
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matter of fact, the updating of the least squares estimator of the parameter θ is given
by

S−1
n = S−1

n−1 − (1 + ΦTnS
−1
n−1Φn)−1S−1

n−1ΦnΦTnS
−1
n−1,

θn = θn−1 + S−1
n Φn

(
Yn − θTn−1Φn

)
,

where the initial value θ0 can be arbitrarily chosen and S0 is a positive definite deter-
ministic matrix. This algorithm can be considered as a Newton stochastic algorithm
since the matrix n−1Sn is an estimate of the Hessian matrix of the least squares
criterion E

[
(Y − θTΦ)2

]
/2.

To the best of our knowledge and apart from the least squares estimate mentioned
above, stochastic Newton algorithms are hardly ever used and studied since they often
require the inversion of a matrix at each step, which can be very expensive in terms
of computation time. An alternative to the stochastic Newton algorithm is the BFGS
algorithm [13, 11, 2] based on the recursive estimation of a matrix whose behavior is
close to the one of the inverse of the Hessian matrix. Nevertheless, this last estimate
does not converge to the exact inverse of the Hessian matrix. Consequently, the
estimation of the unknown vector θ is not satisfactory. Therefore, this new approach
opens some interesting perspectives for the resolution of online optimization problem
[18] where stochastic gradient algorithms were until now the most popular method.

The paper is organized as follows. Section 2 describes the framework and our
main assumptions. In section 3, we introduce our new stochastic Newton algorithm.
Section 4 is devoted to its almost sure convergence as well as its asymptotic normality.
Our theoretical results are illustrated by numerical experiments in section 5. Finally,
all technical proofs are postponed to sections 6 and 7.

2. Framework. In what follows, we shall consider a couple of random variables
(X,Y ) taking values in Rd × {0, 1}, where d is a positive integer, and such that

L
(
Y |Φ

)
= B

(
π(θTΦ)

)
, where π(x) =

exp(x)

1 + exp(x)

with Φ = (1, XT )T and where θ = (θ0, θ1, . . . , θd) is the unknown parameter to
estimate. We recall that θ is a minimizer of the convex function G defined, for all
h ∈ Rd+1, by

(2.1) G(h) = E
[
− log

(
π(hTΦ)Y

(
1− π(hTΦ)

)1−Y )]
= E

[
g (Φ, Y, h)

]
.

In all the following, we assume that the following assumptions are satisfied.
(A1) The vector Φ has a finite moment of order 2 and the matrix E[ΦΦT ] is positive

definite.
(A2) The Hessian matrix ∇2G (θ) is positive definite.

These standard assumptions ensure that θ is the unique minimizer of the functional
G. Assumption (A1) enables us to find a first lower bound for the smallest eigenvalue
of the estimates of the Hessian matrix, while assumptions (A1) and (A2) give the
unicity of the minimizer of G and ensure that the functional G is twice continuously
differentiable. More precisely, for all h ∈ Rd+1, we have

∇G(h) = E [∇h g (Φ, Y, h)] = E

[
exp

(
hTΦ

)
1 + exp (hTΦ)

Φ

]
− E [Y Φ] ,(2.2)

∇2G (h) = E
[
∇2
h g (Φ, Y, h)

]
=

1

4
E

[
1

(cosh (hTΦ/2))
2 ΦΦT

]
.(2.3)
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Remark 2.1. In the previous literature, it is more usual to consider a variable Y
taking values in {−1, 1}, which means that L(Y |Φ) = R

(
π(θTΦ)

)
is the Rademacher

distribution [1, 6, 5]. In this context, θ is a minimizer of the functional G defined, for
all h ∈ Rd+1, by

G(h) = E
[
log
(
1 + exp

(
−Y hTΦ

))]
.

Under the assumptions, the functional G is twice continuously differentiable and, for
all h ∈ Rd+1,

∇G(h) = −E

[
exp

(
−Y hTΦ

)
1 + exp (−Y hTΦ)

Y Φ

]
,

∇2G (h) =
1

4
E

[
1

(cosh (hTΦ/2))
2 ΦΦT

]
.

One can observe that the Hessian matrix remains the same. It ensures that the
algorithm introduced in section 3 can be adapted to this functional and that all the
results given in section 4 still hold in this case.

3. Stochastic Newton algorithm. In order to deal with massive data acquired
online, let us recall that the stochastic Newton algorithm presented in the introduction
is given, for all n > 1, by

an = π(θTn−1Φn)
(
1− π(θTn−1Φn)

)
,(3.1)

S−1
n = S−1

n−1 − an(1 + anΦTnS
−1
n−1Φn)−1S−1

n−1ΦnΦTnS
−1
n−1,(3.2)

θn = θn−1 + S−1
n Φn

(
Yn − π(θTn−1Φn)

)
,(3.3)

where the initial value θ0 is a bounded vector of Rd+1 which can be arbitrarily chosen
and S0 = Id+1. Unfortunately, we were not able to prove that n−1Sn converges
almost surely to the Hessian matrix ∇2G (θ), as well as to establish the almost sure
convergence of θn to θ. This is the reason why we slightly modify our strategy by
proposing a truncated version of previous estimates given, for all n > 1, by

ân = π(θ̂Tn−1Φn)
(

1− π(θ̂Tn−1Φn)
)
,(3.4)

θ̂n = θ̂n−1 + S−1
n−1Φn

(
Yn − π(θ̂Tn−1Φn)

)
,(3.5)

S−1
n = S−1

n−1 − αn(1 + αnΦTnS
−1
n−1Φn)−1S−1

n−1ΦnΦTnS
−1
n−1,(3.6)

where the initial value θ̂0 is a bounded vector of Rd+1 which can be arbitrarily chosen,
S0 = Id+1, and (αn) is a sequence of random variables defined, for some positive
constant cα, by

(3.7) αn = max
{
ân,

cα
nβ

}
= max

{
1

4
(
cosh

(
ΦTn θ̂n−1/2

))2 , cαnβ
}

with β ∈]0, 1/2[. From now on and for the sake of simplicity, we assume that cα 6 1/4.
It immediately implies that, for all n > 1, αn 6 1/4. However, the proofs remains
true for any cα > 0. We already saw in section 1 that S−1

n coincides with the exact
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inverse of the weighted matrix Sn given, for all n > 1, by

(3.8) Sn =

n∑
k=1

αkΦkΦTk + Id+1.

Moreover, we will see in section 4 that, even with this truncation of the estimate of
the Hessian matrix, n−1Sn converges almost surely to the Hessian matrix ∇2G (θ).

Consequently, we will still have an optimal asymptotic behavior of the estimator θ̂n
of θ.

4. Main results. Our first result deals with the almost sure convergence of our
estimates of θ and the Hessian matrix ∇2G (θ). For all n > 1, denote

Sn =
1

n
Sn.

Theorem 4.1. Assume that (A1) and (A2) are satisfied. Then, we have the al-
most sure convergences

(4.1) lim
n→∞

θ̂n = θ a.s.,

(4.2) lim
n→∞

Sn = ∇2G (θ) a.s.

We now focus on the almost sure rates of convergence of our estimate of θ.

Theorem 4.2. Assume that (A1) and (A2) are satisfied. Then, we have for all
γ > 0,

(4.3)
∥∥θ̂n − θ∥∥2

= o

(
(log n)1+γ

n

)
a.s.

Moreover, suppose the random vector Φ has a finite moment of order > 2. Then, we
have

(4.4)
∥∥θ̂n − θ∥∥2

= O

(
log n

n

)
a.s.

The almost sure rates of convergence of our estimate of the Hessian matrix
∇2G (θ) and its inverse are as follows.

Theorem 4.3. Assume that (A1) and (A2) are satisfied and that the random
vector Φ has a finite moment of order 4. Then, we have for all 0 < β < 1/2,

(4.5)
∥∥Sn −∇2G (θ)

∥∥2
= O

(
1

n2β

)
a.s.

In addition, we also have

(4.6)
∥∥∥S−1

n −
(
∇2G (θ)

)−1
∥∥∥2

= O

(
1

n2β

)
a.s.

Proof. The proofs of Theorems 4.1, 4.2, and 4.3 are given in section 6.

Remark 4.1. One can observe that we do not obtain the parametric rate 1/n
for these estimates. This is due to the truncation αn which slightly modifies our
estimation procedure. However, without this truncation, we were not able to establish
the almost sure convergence of any estimate. Finally, the last result (4.6) ensures

that our estimation procedure performs pretty well and that the estimator θ̂n has an
optimal asymptotic behavior.
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Theorem 4.4. Assume that (A1) and (A2) are satisfied and that the random
vector Φ has a finite moment of order 4. Then, we have the asymptotic normality

(4.7)
√
n
(
θ̂n − θ

)
L−−−−→

n→∞
N
(

0,
(
∇2G (θ)

)−1
)
.

Proof. The proof of Theorem 4.4 is given in section 7.

Remark 4.2. We deduce from (4.2) and (4.7) that

(4.8)
(
θ̂n − θ

)T
Sn

(
θ̂n − θ

)
L−−−−→

n→∞
χ2(d+ 1).

Convergence (4.8) allows us to build confidence regions for the parameter θ. Moreover,
for any vector w ∈ Rd+1 different from zero, we also have

(4.9)
wT
(
θ̂n − θ

)
√
wTS−1

n w

L−−−−→
n→∞

N (0, 1).

Confidence intervals and significance tests for the components of θ can be designed
from (4.9). One can observe that our stochastic Newton algorithm has the same
asymptotic behavior as the averaged version of a stochastic gradient algorithm [5, 7,
14].

5. Numerical experiments. The goal of this section is to illustrate the as-
ymptotic behavior of the truncated stochastic Newton (TSN) algorithm defined by
equation (3.5). For that purpose, we will focus on the model introduced in [3] and
used for comparing several gradient algorithms. We shall compare the numerical per-
formances of the TSN algorithm with those obtained with three different algorithms:
the stochastic Newton (SN) algorithm given by (3.3), the stochastic gradient (SG)
algorithm, and the averaged SG (ASG) algorithm. Let us mention that simulations
were carried out using the statistical software R.

5.1. Experiment model. We focus on the model introduced in [3], defined by

L(Y |Φ) = B
(
π(θTΦ)

)
,

where Φ = (1, XT )T and X is a random vector of Rd with d = 10 with independent
coordinates uniformly distributed on the interval [0, 1]. Moreover the unknown pa-
rameter θ = (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)T . This model is particularly interesting
as it leads to a situation where the Hessian matrix ∇2G(θ) is not well-conditioned
since it has eigenvalues of different order sizes. Indeed, one can see in Table 1 that
the smallest eigenvalue of ∇2G(θ) is close to 4.422 10−4 while its largest eigenvalue is
close to 0.1239.

Table 1
Eigenvalues of ∇2G(θ) arranged in decreasing order.

0.1239 2.832 10−3 2.822 10−3 2.816 10−3 2.778 10−3 2.806 10−3

2.651 10−3 2.517 10−3 2.1567 10−3 9.012 10−4 4.422 10−4
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Fig. 1. Mean squared error of the four algorithms.

5.2. Comparison of the different algorithms. Our comparisons are based
on the mean squared error (MSE) defined, for all estimates θ̂n of θ, by

E
[∥∥θ̂n − θ∥∥2

]
.

We simulate N = 400 samples wth a maximum number of iterations n = 5 000.
For each sample, we estimate the unknown parameter θ using the four algorithms
(TSN, SN, SG, ASG) which are initialized identically by choosing the initial value

θ̂0 uniformly in a compact subset containing the true value θ. For the TSN and
SN algorithms, we take S0 = Id+1. In addition, for the TSN algorithm, we choose
the truncation term defined by cα = 10−10 and β = 0.49. Finally, to play fair, we
choose the best step sequence for the SG algorithm with the help of a cross validation
method. Figure 1 shows the decreasing behavior of the MSE, calculated for the four
algorithms, as the number of iterations n grows from 1 to 5 000.

It is clear that the stochastic Newton algorithms perform much better than the
SG algorithms. The bad behavior of the SG algorithms is certainly due to the fact
that the Hessian matrix ∇2G(θ) is not well-conditioned. One can also observe that it
is quite useless to average the SG algorithm.

Figure 2 shows the boxplots of the N = 400 values of the squared error ‖θ̂n− θ‖2
computed for the TSN and SN algorithms, as well as for the deterministic Newton–
Raphson (NR) algorithm.

The NR algorithm can be considered as one of the best algorithms to estimate
parameters in logistic regression. Nevertheless, as mentioned before, this algorithm
is not well-adapted with high-frequency data arriving sequentially, which is a first
significant difference with our TSN algorithm. Moreover, for large samples living
in high-dimensional spaces, the NR algorithm can be very expensive in terms of
computation time. Our purpose was to give a context where it is possible to compute
it quickly, in order to compare it with our TSN algorithm, and to check that these
last ones perform nearly as well as the NR algorithm.



NEWTON ALGORITHM FOR LOGISTIC REGRESSIONS 355

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

TSN SN NR

0
5

10
20

25
30

Sq
ua

re
d 

er
ro

r 

15

Fig. 2. Boxplots of the squared error for the TSN, SN, and the NR algorithms.

5.3. Some comments concerning the truncation. To close this section, let
us make some comments concerning the truncation term introduced in the TSN algo-
rithm. This short numerical experiment tends to show that the use of the truncation
is artificial and useless. Indeed, one can take the constant cα in (3.7) as small as
possible and see that the TSN and SN algorithms match. Finally, an inappropriate
choice of cα can lead to poor numerical behavior of the TSN algorithm.

6. Proofs of the almost sure convergence results.

6.1. Two technical lemmas. We start the proofs of the almost sure conver-
gence results with two technical lemmas.

Lemma 6.1. Assume that the random vector Φ has a finite moment of order 2.
Then, we have the almost sure convergence for all 0 < β < 1,

(6.1) lim
n→∞

1∑n
k=1 k

−β

n∑
k=1

k−βΦkΦTk = E
[
ΦΦT

]
a.s.

Remark 6.1. We obtain from (3.7) together with (3.8) that for all n > 1,

(6.2) Sn > cα

n∑
k=1

k−βΦkΦTk .

Denote by λmin(Sn) the minimum eigenvalue of the positive definite matrix Sn. We
immediately obtain from (6.1) and (6.2) that for n large enough

λmin(Sn) >
λcα
2

n∑
k=1

k−β >
λcα
2
n1−β a.s.,

where λ stands for the minimum eigenvalue of the positive definite deterministic
matrix E

[
ΦΦT

]
. Consequently, we have under assumption (A1) that for n large
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enough,

(λmin(Sn))
−2 6

4

λ2c2α

1

n2(1−β)
a.s.

Therefore, as soon as β ∈]0, 1/2[,

(6.3)

∞∑
n=1

(λmin (Sn))
−2

<∞ a.s.

Proof. It follows from a straightforward Abel transform calculation that

n∑
k=1

k−βΦkΦTk =

n∑
k=1

k−β
(
Σk − Σk−1

)
= n−βΣn +

n−1∑
k=1

(
k−β − (k + 1)−β

)
Σk

= n−βΣn +

n−1∑
k=1

bkk
−1Σk,(6.4)

where Σ0 = 0 and for all n > 1,

Σn =

n∑
k=1

ΦkΦTk and bn = n
(
n−β − (n+ 1)−β

)
.

On the one hand, we obtain from the standard strong law of large numbers that

(6.5) lim
n→∞

1

n
Σn = E

[
ΦΦT

]
a.s.

On the other hand,
n∑
k=1

bk =

n∑
k=1

k−β − n1−β

which implies that

lim
n→∞

1

n1−β

n∑
k=1

bk =
β

1− β
.

Then, we deduce from Toeplitz’s lemma given, e.g., in ([4, page 54]) that

(6.6) lim
n→∞

1

n1−β

n−1∑
k=1

bkk
−1Σk =

β

1− β
E
[
ΦΦT

]
a.s.

Consequently, we obtain from (6.4) together with (6.5) and (6.6) that

lim
n→∞

1

n1−β

n∑
k=1

k−βΦkΦTk =
1

1− β
E
[
ΦΦT

]
a.s.

which immediately leads to (6.1).
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Our second lemma concerns a useful Lipschitz property of the function α defined,
for all h, ` ∈ Rd+1, by

(6.7) α (h, `) = π
(
hT `

)(
1− π

(
hT `

))
=

1

4 (cosh (hT `/2))
2 .

Lemma 6.2. For all h, `, `′ ∈ Rd+1, we have

(6.8) |α (h, `)− α (h, `′)| 6 1

12
√

3
‖h‖ ‖`− `′‖ .

Proof. Let ϕ be the function defined, for all x ∈ R, by

ϕ(x) = π(x)(1− π(x)) =
exp(x)

(1 + exp(x))2
=

1

4(cosh(x/2))2
.

We clearly have

ϕ′(x) =
exp(x)(1− exp(x))

(1 + exp(x))3
,

ϕ′′(x) =
exp(x)((exp(x))2 − 4 exp(x) + 1)

(1 + exp(x))4
.

It is not hard to see that for all x ∈ R,

(6.9) |ϕ′(x)| 6 1

6
√

3
.

Hence, it follows from (6.9) together with the mean value theorem that for all x, y ∈ R,

(6.10) |ϕ(x)− ϕ(y)| 6 1

6
√

3
|x− y|.

Consequently, we obtain from (6.10) that for all h, `, `′ ∈ Rd+1,

|α (h, `)− α (h, `′)| 6 1

12
√

3

∣∣hT (`− `′)
∣∣ 6 1

12
√

3
‖h‖ ‖`− `′‖

which completes the proof of Lemma 6.2.

6.2. Proof of Theorem 4.1. We are now in position to proceed to the proof of
the almost sure convergence (4.1). By a Taylor expansion of the twice continuously
differentiable functional G, there exists ξn ∈ Rd+1 such that

(6.11) G
(
θ̂n+1

)
= G

(
θ̂n
)
+∇G

(
θ̂n
)T (

θ̂n+1−θ̂n
)
+

1

2

(
θ̂n+1−θ̂n

)T∇2G(ξn)
(
θ̂n+1−θ̂n

)
.

We clearly have from (2.3) that∥∥∇2G(ξn)
∥∥ 6

1

4
E
[
‖Φ‖2

]
.

Hence, we obtain from (3.5) together with (6.11) that

G
(
θ̂n+1

)
6 G

(
θ̂n
)

+∇G
(
θ̂n
)T (

θ̂n+1 − θ̂n
)

+
1

8
E
[
‖Φ‖2

]∥∥θ̂n+1 − θ̂n
∥∥2

= G
(
θ̂n
)
−∇G

(
θ̂n
)T
S−1
n Zn+1 +

1

8
E
[
‖Φ‖2

]∥∥S−1
n Zn+1

∥∥2

6 G
(
θ̂n
)
−∇G

(
θ̂n
)T
S−1
n Zn+1 +

1

8
E
[
‖Φ‖2

]
(λmin (Sn))

−2 ∥∥Zn+1

∥∥2
,
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where Zn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
. Since ‖Zn+1‖ 6 ‖Φn+1‖, it implies that

(6.12) G
(
θ̂n+1

)
6 G

(
θ̂n
)
−∇G

(
θ̂n
)T
S−1
n Zn+1 +

1

8
E
[
‖Φ‖2

]
(λmin (Sn))

−2 ∥∥Φn+1

∥∥2
.

Let F = (Fn) be the filtration given, for all n > 1, by Fn = σ ((Φ1, Y1) , . . . , (Φn, Yn)).

We clearly have E [Zn+1|Fn] = ∇G
(
θ̂n
)
. Consequently, we obtain from (6.12) that

(6.13)

E
[
G
(
θ̂n+1

)
|Fn
]
6 G

(
θ̂n
)
−∇G

(
θ̂n
)T
S−1
n ∇G

(
θ̂n
)

+
1

8

(
E
[
‖Φ‖2

])2(
λmin (Sn)

)−2
a.s.

Our goal is now to apply the Robbins–Siegmund theorem ([4, page 18]) to the three

positive sequences (Vn), (An), and (Bn) given by Vn = G
(
θ̂n
)
,

An =
1

8

(
E
[
‖Φ‖2

])2(
λmin (Sn)

)−2
, and Bn =

∥∥S−1/2
n ∇G

(
θ̂n
)∥∥2

.

It clearly follows from (6.13) that

E
[
Vn+1|Fn

]
6 Vn +An −Bn a.s.

Moreover, we already saw from (6.3) that

(6.14)

∞∑
n=1

An <∞ a.s.

Consequently, we can deduce from the Robbins–Siegmund theorem that (Vn) conver-
gences almost surely to a finite random variable and

(6.15)

∞∑
n=1

Bn <∞ a.s.

Furthermore, since Bn > (λmax (Sn))
−1 ∥∥∇G(θ̂n)∥∥2

, we get from (6.15) that

(6.16)

∞∑
n=1

(λmax (Sn))
−1 ∥∥∇G(θ̂n)∥∥2

<∞ a.s.

In addition, we obtain from (3.7) together with (3.8) that

λmax (Sn) 6 1 +
1

4
λmax

(
n∑
k=1

ΦkΦTk

)

since, for all n > 1, αn 6 1/4. Therefore, (6.5) ensures that for n large enough

λmax(Sn) 6 Λn a.s.,

where Λ is the maximum eigenvalue of the positive definite deterministic matrix
E
[
ΦΦT

]
. It implies that

(6.17)

∞∑
n=1

(λmax (Sn))
−1

= +∞ a.s.
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Hence, it follows from the conjunction of (6.16) and (6.17) that ∇G
(
θ̂n
)

converges to

0 almost surely. It means that θ̂n converges almost surely to the unique zero θ of the
gradient, which is exactly what we wanted to prove. It remains to prove the almost
sure convergence (4.2). We infer from (3.8) that

(6.18) Sn =
1

n

n∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦTk +

1

n

n∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦTk +

1

n
Id+1.

We now give the convergence of the two terms on the right-hand side of (6.18). For

the first one, one can observe that αn = α
(
Φn, θ̂n−1

)
as soon as α

(
Φn, θ̂n−1

)
> cαn

−β .
Consequently,

1

n

n∑
k=1

(
αk−α

(
Φk, θ̂k−1

))
ΦkΦTk =

1

n

n∑
k=1

(
αk−α

(
Φk, θ̂k−1

))
ΦkΦTk I{

α(Φk,θ̂k−1)6cαk−β
}.

It implies that ∥∥∥∥∥ 1

n

n∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦTk

∥∥∥∥∥ 6
cα
n

n∑
k=1

1

kβ
∥∥Φk

∥∥2
.

However, one can easily check from Lemma 6.1 that

lim
n→∞

1

n

n∑
k=1

1

kβ
∥∥Φk

∥∥2
= 0 a.s.

It means that the first term on the right-hand side of (6.18) goes to 0 almost surely.
We now study the convergence of the second term on the right-hand side of (6.18)
which can be rewritten as

1

n

n∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦTk =

1

n

n∑
k=1

α
(
Φk, θ

)
ΦkΦTk .+

1

n

n∑
k=1

(
α
(
Φk, θ̂k−1

)
−α
(
Φk, θ

))
ΦkΦTk .

On the one hand, thanks to the standard strong law of large numbers, we clearly have

(6.19) lim
n→∞

1

n

n∑
k=1

α
(
Φk, θ

)
ΦkΦTk = E

[
α
(
Φ, θ

)
ΦΦT

]
= ∇2G(θ) a.s.

On the other hand, denote by Rn the remainder

Rn =

n∑
k=1

(
α
(
Φk, θ̂k−1

)
− α

(
Φk, θ

))
ΦkΦTk .

We can split Rn into two terms Rn = Pn +Qn, where, for some positive constant M ,

Pn =

n∑
k=1

(
α
(
Φk, θ̂k−1

)
− α

(
Φk, θ

))
ΦkΦTk I{

‖Φk‖6M
},

Qn =

n∑
k=1

(
α
(
Φk, θ̂k−1

)
− α

(
Φk, θ

))
ΦkΦTk I{

‖Φk‖>M
}.
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It follows from the Lipschitz property of the function α is given in Lemma 6.2 that∥∥∥ 1

n
Pn

∥∥∥ 6
M

12
√

3

1

n

n∑
k=1

∥∥θ̂k−1 − θ
∥∥ ‖Φk‖2 .

Hence, we deduce from (4.1) together with (6.5) that

(6.20) lim
n→∞

1

n
Pn = 0 a.s.

Furthermore, we also have∥∥∥ 1

n
Qn

∥∥∥ 6
1

2n

n∑
k=1

‖Φk‖2 I{
‖Φk‖>M

}.
We deduce once again from the strong law of large numbers that

lim
n→∞

1

n

n∑
k=1

‖Φk‖2 I{
‖Φk‖>M

} = E
[
‖Φ‖2 I{

‖Φ‖>M
}] a.s.

which implies via (6.20) that for any positive constant M ,

(6.21) lim sup
n→∞

∥∥∥ 1

n
Rn

∥∥∥ 6
1

2
E
[
‖Φ‖2 I{

‖Φ‖>M
}] a.s.

Nonetheless, we obtain from the Lebesgue dominated convergence theorem that

lim
M→∞

E
[
‖Φ‖2 I{

‖Φ‖>M
}] = 0.

Consequently, we find from (6.21)

lim
n→∞

1

n
Rn = 0 a.s.

Finally, (4.2) follows from (6.18) and (6.19), which proves Theorem 4.1.

6.3. Proof of Theorem 4.2. It follows from (3.5) that for all n > 1,

θ̂n+1 − θ = θ̂n − θ −
1

n

(
S
−1

n − S−1
)
Zn+1 −

1

n
S−1Zn+1,

where Zn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
and S = ∇2G(θ). Consequently,

(6.22) θ̂n+1 − θ = θ̂n − θ −
1

n

(
S
−1

n − S−1
)
Zn+1 −

1

n
S−1

(
∇G

(
θ̂n
)

+ εn+1

)
,

where εn+1 = Zn+1 − ∇G
(
θ̂n
)
. We already saw that E [Zn+1|Fn] = ∇G

(
θ̂n
)

which
clearly implies that (εn) is a martingale difference sequence, E [εn+1|Fn] = 0. Denote
by δn the remainder of the Taylor’s expansion of the gradient

δn = ∇G
(
θ̂n
)
−∇2G(θ)

(
θ̂n − θ

)
= ∇G

(
θ̂n
)
− S

(
θ̂n − θ

)
.

We deduce from (6.22) that for all n > 1,

(6.23) θ̂n+1 − θ =
(

1− 1

n

)(
θ̂n − θ

)
− 1

n

(
S
−1

n − S−1
)
Zn+1 −

1

n
S−1

(
δn + εn+1

)
,
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which leads to

θ̂n+1 − θ = − 1

n

n∑
k=1

(
S
−1

k − S−1
)
Zk+1 −

1

n
S−1

n∑
k=1

(
δk + εk+1

)
= − 1

n

n∑
k=1

(
S
−1

k − S−1
)(
εk+1 +∇G

(
θ̂k
))
− 1

n
S−1

n∑
k=1

(
δk + εk+1

)
= − 1

n
Mn+1 −∆n,(6.24)

where

Mn+1 =

n∑
k=1

S
−1

k εk+1

and

∆n =
1

n

n∑
k=1

(
S
−1

k − S−1
)
∇G

(
θ̂k
)

+
1

n
S−1

n∑
k=1

δk

=
1

n

n∑
k=1

(
S
−1

k − S−1
)
S
(
θ̂k − θ

)
+

1

n

n∑
k=1

S
−1

k δk.(6.25)

We claim that the remainder δn is negligible. As a matter of fact,

‖δn‖ =

∥∥∥∥∥
∫ 1

0

∇2G
(
θ + t

(
θ̂n − θ

))(
θ̂n − θ

)
dt−∇2G(θ)

(
θ̂n − θ

)∥∥∥∥∥
6
∫ 1

0

∥∥∥∇2G
(
θ + t

(
θ̂n − θ

))
−∇2G(θ)

∥∥∥dt∥∥θ̂n − θ∥∥.
However, the functional G is twice continuously differentiable and θ̂n converges almost
surely to θ, which ensures that

(6.26) ‖δn‖ = o
(∥∥θ̂n − θ∥∥) a.s.

Then, we obtain from (4.2), (6.25), and (6.26) that there exist a constant 0 < c < 1/2
and a finite positive random variable D such that for all n > 1,

(6.27) ‖∆n‖ 6 cLn +
1

n
D a.s.,

where

Ln =
1

n

n∑
k=1

‖θ̂k − θ‖.

Therefore, we deduce from (6.24) and (6.27) that for all n > 1,

Ln+1 =
(

1− 1

n+ 1

)
Ln +

1

n+ 1
‖θ̂n+1 − θ‖

6
(

1− 1

n+ 1

)
Ln +

1

n+ 1

( 1

n
‖Mn+1‖+ ‖∆n‖

)
a.s.

6
(

1− d

n+ 1

)
Ln +

1

n(n+ 1)

(
‖Mn+1‖+D

)
a.s.,
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where d = 1− c. It clearly implies by induction that for all n > 1,

(6.28) Ln 6
n∏
k=2

(
1− d

k

)
L1 +

n∑
k=2

n∏
i=k+1

(
1− d

i

) 1

k(k + 1)

(
‖Mk+1‖+D

)
a.s.

Hereafter, we shall proceed to the evaluation of the right-hand side term in (6.28).
The sequence (Mn) is a locally square-integrable multidimensional martingale with
predictable quadratic variation given by

(6.29) 〈M〉n =

n∑
k=2

S
−1

k−1E
[
εkε

T
k |Fk−1

]
S
−1

k−1.

However, for all n > 1,

dE
[
εn+1ε

T
n+1|Fn

]
= E

[
Zn+1Z

T
n+1|Fn

]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(
π
(
θ̂TnΦn+1

)
− Yn+1

)2

Φn+1ΦTn+1|Fn
]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(
π
(
θ̂TnΦn+1

)
− π

(
θTΦn+1

)
+ π

(
θTΦn+1

)
− Yn+1

)2

Φn+1ΦTn+1|Fn
]

− ∇G
(
θ̂n
)
∇G

(
θ̂n
)T
.

Since E
[
Yn+1|Φn+1

]
= π

(
θTΦn+1

)
, we obtain that for all n > 1,

E
[
εn+1ε

T
n+1|Fn

]
= E

[(
π
(
θ̂TnΦn+1

)
− π

(
θTΦn+1

))2

Φn+1ΦTn+1|Fn
]

+ E
[(
π
(
θTΦn+1

)
−Yn+1)

)2

Φn+1ΦTn+1|Fn
]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(
π
(
θ̂TnΦn+1

)
− π

(
θTΦn+1

))2

Φn+1ΦTn+1|Fn
]

+∇2G(θ)

− ∇G
(
θ̂n
)
∇G

(
θ̂n
)T
.

By continuity together with (4.1), we have the almost sure convergences

lim
n→∞

∇G
(
θ̂n
)
∇G

(
θ̂n
)T

= 0 a.s.

and

lim
n→∞

E
[(
π
(
θ̂TnΦn+1

)
− π

(
θTΦn+1

))2

Φn+1ΦTn+1|Fn
]

= 0 a.s.

Therefore, we obtain from (4.2) and (6.29) that

(6.30) lim
n→∞

1

n
〈M〉n =

(
∇2G (θ)

)−1
a.s.

Hence, it follows from the strong law of large numbers for multidimensional martin-
gales given, e.g., by Theorem 4.13.16 in [4] that for any γ > 0,

(6.31)
∥∥Mn

∥∥2
= o
(
n
(
log n

)1+γ)
a.s.
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Moreover, if the random vector Φ has a finite moment of order > 2, we also have the
more precise almost sure rate of convergence

(6.32)
∥∥Mn

∥∥2
= O

(
n log n

)
a.s.

We will prove (4.4) inasmuch as the proof of (4.3) follows essentially the same lines.
We deduce from (6.32) that there exists a finite positive random variable C such that
for all n > 1,

(6.33)
∥∥Mn+1

∥∥ 6 C
√
n log n a.s.

We are now in position to find an upper bound for inequality (6.28). Via the elemen-
tary 1− x 6 exp(−x), we clearly have

n∏
k=2

(
1− d

k

)
6
( 2

n+ 1

)d
and

n∏
i=k+1

(
1− d

i

)
6
(k + 1

n+ 1

)d
.

Consequently, we obtain from (6.28) and (6.33) that for all n > 1,

Ln 6
( 2

n+ 1

)d
L1 +

n∑
k=2

(k + 1

n+ 1

)d 1

k(k + 1)

(
C
√
k log k +D

)
a.s.,

leading to

(6.34) Ln 6
( 2

n

)d
L1 +

A
(
log n

)1/2
nd

n∑
k=2

1

ka
a.s.,

where A = max(C,D) and a = 3/2 − d = 1/2 + c. Hereafter, we recall that the
positive constant c has been chosen such that c < 1/2 which means that 0 < a < 1.
Hence, we find from (6.34) that for all n > 1,

Ln 6
( 2

n

)d
L1 +

A
(
log n

)1/2
nd+a−1

a.s.

6
( 2

n

)d
L1 +A

( log n

n

)1/2

a.s.

Since d > 1/2, it immediately implies that

(6.35) L2
n = O

( log n

n

)
a.s.

Then, it follows from the conjunction of (6.27) and (6.35) that

‖∆n‖2 = O
( log n

n

)
a.s.

It ensures, via (6.24) and (6.32), that

‖θ̂n − θ‖2 = O
( log n

n

)
a.s.

which is exactly what we wanted to prove.
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6.4. Proof of Theorem 4.3. First of all, it follows from (3.8) that Sn can be
split into two terms

Sn =
1

n

n∑
k=1

αkΦkΦTk +
1

n
Id+1

=
1

n
Tn +

1

n

n∑
k=1

E
[
αkΦkΦTk |Fk−1

]
+

1

n
Id+1,(6.36)

where

Tn =

n∑
k=1

αkΦkΦTk − E
[
αkΦkΦTk |Fk−1

]
.

The sequence (Tn) is a locally square-integrable multidimensional martingale. Since
the random vector Φ has a finite moment of order 4 and for all n > 1, αn 6 1/4, we
obtain from the strong law of large numbers for multidimensional martingales given,
e.g., by Theorem 4.13.16 in [4] that for any γ > 0,

(6.37)
∥∥Tn∥∥2

= o
(
n
(
log n

)1+γ)
a.s.

Let us now give the rate of convergence of the second term on the right-hand side of
(6.36). On the one hand, we have the decomposition

n∑
k=1

αkΦkΦTk =

n∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦTk +

n∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦTk .

We already saw in the proof of Theorem 4.1 that

(6.38)

n∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦTk 6 cα

n∑
k=1

1

kβ
ΦkΦTk .

Hence, by taking the conditionnal expectation on both sides of (6.38), we obtain that∥∥∥ n∑
k=1

E
[(
αk − α

(
Φk, θ̂k−1

))
ΦkΦTk |Fk−1

]∥∥∥ 6 cα

n∑
k=1

1

kβ
E
[
‖Φk‖2|Fk−1

]
6
cαE

[
‖Φ‖2]

1− β
n1−β .(6.39)

On the other hand,

n∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦTk |Fk−1

]
=

n∑
k=1

(
∇2G

(
θ̂k−1

)
−∇2G

(
θ
))

+ n∇2G
(
θ
)
.

Consequently, we immediately deduce from inequality (6.8) that∥∥∥ n∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦTk |Fk−1

]
− n∇2G

(
θ
)∥∥∥ 6

n∑
k=1

∥∥∥∇2G
(
θ̂k−1

)
−∇2G

(
θ
)∥∥∥

6
1

12
√

3

n∑
k=1

∥∥θ̂k−1 − θ
∥∥E[‖Φk‖3|Fk−1

]
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which implies that

(6.40)
∥∥∥ n∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦTk |Fk−1

]
− n∇2G

(
θ
)∥∥∥ 6

E
[
‖Φ‖3]

12
√

3

n∑
k=1

∥∥θ̂k−1 − θ
∥∥.

Finally, it follows from the conjunction of (6.37), (6.39), and (6.40) together with
(6.35) that for all 0 < β < 1/2,

∥∥Sn −∇2G (θ)
∥∥2

= O

(
1

n2β

)
a.s.

which achieves the proof of (4.5). Moreover, we obtain (4.6) from (4.5) via the identity

S
−1

n −
(
∇2G (θ)

)−1
= S

−1

n

(
∇2G (θ)− Sn

) (
∇2G (θ)

)−1
.

7. Proofs of the asymptotic normality result. We are now in the position
to proceed to the proof of the asymptotic normality (4.7). We clearly have from (6.24)
that

(7.1)
√
n
(
θ̂n+1 − θ

)
= − 1√

n
Mn+1 −Rn,

where the remainder Rn =
√
n∆n. First of all, we claim that

(7.2) lim
n→∞

Rn = 0 a.s.

As a matter of fact, it follows from (6.25) that Rn = Pn +Qn, where

Pn =
1√
n

n∑
k=1

(
S
−1

k − S−1
)
S
(
θ̂k − θ

)
,

Qn =
1√
n

n∑
k=1

S
−1

k δk.

We have from (4.4) together with (4.6) that

‖Pn‖ = O

(
1√
n

n∑
k=1

1

kβ

√
log k√
k

)
= O

(√
log n

nβ

)
a.s.

which implies that

(7.3) lim
n→∞

Pn = 0 a.s.

Moreover, we obtain from inequality (6.8) and (4.4) that

‖Qn‖ = O

(
1√
n

n∑
k=1

∥∥θ̂k − θ∥∥2

)
= O

(
1√
n

n∑
k=1

log k

k

)
= O

(
(log n)2

√
n

)
a.s.

which also implies that

(7.4) lim
n→∞

Qn = 0 a.s.
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Consequently, (7.3) and (7.4) clearly lead to convergence (7.2). Hereafter, it only
remains to study the asymptotic behavior of the martingale term Mn. We already
saw from (6.30) that its predictable quadratic variation 〈M〉n satisfies

lim
n→∞

1

n
〈M〉n =

(
∇2G (θ)

)−1
a.s.

In addition, as εn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
−∇G

(
θ̂n
)
, we clearly have the very simple

upper bound ∥∥εn+1

∥∥ 6
∥∥Φn+1

∥∥+ E
[∥∥Φ

∥∥].
Hence, since Φ has a finite moment of order 4,

(7.5) sup
n>1

E
[∥∥εn∥∥4]

<∞.

Therefore, we immediately obtain from (7.5) that (Mn) satisfies Lindeberg’s condition.
Finally, we deduce from the central limit theorem for martingales given by Corollary
2.1.10 in [4] that

1√
n
Mn

L−−−−→
n→∞

N
(

0,
(
∇2G (θ)

)−1
)

which, via (7.1) and (7.2), completes the proof of Theorem 4.4.
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