ON THE MULTI-DIMENSIONAL ELEPHANT RANDOM WALK

BERNARD BERCU AND LUCILE LAULIN

ABSTRACT. The purpose of this paper is to investigate the asymptotic behavior
of the multi-dimensional elephant random walk (MERW). It is a non-Markovian
random walk which has a complete memory of its entire history. A wide range of
literature is available on the one-dimensional ERW. Surprisingly, no references are
available on the MERW. The goal of this paper is to fill the gap by extending the
results on the one-dimensional ERW to the MERW. In the diffusive and critical
regimes, we establish the almost sure convergence, the law of iterated logarithm
and the quadratic strong law for the MERW. The asymptotic normality of the
MERW, properly normalized, is also provided. In the superdiffusive regime, we
prove the almost sure convergence as well as the mean square convergence of
the MERW. All our analysis relies on asymptotic results for multi-dimensional
martingales.

1. INTRODUCTION

The elephant random walk (ERW) is a fascinating discrete-time random process
arising from mathematical physics. It is a non-Markovian random walk on Z which
has a complete memory of its entire history. This anomalous random walk was intro-
duced by Schiitz and Trimper [20], in order to investigate how long-range memory
affects the random walk and induces a crossover from a diffusive to superdiffusive
behavior. It was referred to as the ERW in allusion to the traditional saying that
elephants can always remember where they have been. The ERW shows three differ-
ent regimes depending on the location of its memory parameter p which lies between
zero and one.

Over the last decade, the ERW has received considerable attention in the mathe-
matical physics literature in the diffusive regime p < 3/4 and the critical regime
p = 3/4, see e.g. [1],[2].[5],[8],[9],[10],[13],[17],[19] and the references therein. Quite
recently, Baur and Bertoin [1] and independently Coletti, Gava and Schiitz [6] have
proven the asymptotic normality of the ERW, properly normalized, with an explicit
asymptotic variance.

The superdiffusive regime p > 3/4 is much harder to handle. Initially, it was sug-
gested by Schiitz and Trimper [20] that, even in the superdiffusive regime, the ERW
has a Gaussian limiting distribution. However, it turns out [3] that this limiting
distribution is not Gaussian, as it was already predicted in [10], see also [6],[19].

Surprisingly, to the best of our knowledge, no references are available on the multi-
dimensional elephant random walk (MERW) on Z¢, except [8],[18] in the special
case d = 2. The goal of this paper is to fill the gap by extending the results on the
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one-dimensional ERW to the MERW. To be more precise, we shall study the influ-
ence of the memory parameter p on the MERW and we will show that the critical
value is given by

_2d+1
Pad = 1

In the diffusive and critical regimes p < py, the reader will find the natural extension
to higher dimension of the results recently established in [1],[3],[6],[7] on the almost
sure asymptotic behavior of the ERW as well as on its asymptotic normality. In the
superdiffusive regime p > py, we will also prove some extensions of the results in

[3],[8],[18].

Our strategy is to make an extensive use of the theory of martingales [11],[15]. More
precisely, our approach relies on the strong law of large numbers and the central
limit theorem for multi-dimensional martingales [11], as well as the law of iterated
logarithm [21],[22]. As mentioned by Baur and Bertoin [1], it should be possible
to establish functional central limit theorems for the MERW in the diffusive and
critical regimes using the results on generalized Pélya urns of Janson [12]. However,
we have chosen to privilege the martingale approach in our analysis of the MERW.
We strongly believe that our approach could be successfully extended to MERW
with stops [8],[16], to amnesiac MERW [9], as well as to MERW with reinforced
memory [1],[14].

The paper is organized as follows. In Section 2, we introduce the exact MERW
and the multi-dimensional martingale we will extensively make use of. The main
results of the paper are given in Section 3. As usual, we first focus our attention
on the diffusive regime p < py and we investigate the almost sure convergence,
the law of iterated logarithm and the quadratic strong law for the MERW. The
asymptotic normality of the MERW, properly normalized, is also provided. Next,
similar results are stated in the critical regime p = pg. At last, we study the
superdiffusive regime p > p; and we present the almost sure convergence as well
as the mean square convergence of the MERW to a non-degenerate random vector.
Our martingale approach is described in Section 4, while all technical proofs are
postponed to Sections 5 and 6.

2. THE MULTI-DIMENSIONAL ELEPHANT RANDOM WALK

First of all, let us introduce the MERW. It is the natural extension to higher
dimension of the one-dimensional ERW defined in the pioneer work of Schiitz and
Trimper [20]. For a given dimension d > 1, let (S,,) be a random walk on Z¢, starting
at the origin at time zero, Sp = 0. At time n = 1, the elephant moves in one of the
2d directions with the same probability 1/2d. Afterwards, at time n+1, the elephant
chooses uniformly at random an integer k£ among the previous times 1,...,n. Then,
it moves exactly in the same direction as that of time & with probability p € [0, 1] or
in one of the 2d — 1 remaining directions with the same probability (1 —p)/(2d — 1),
where the parameter p stands for the memory parameter of the MERW. From a
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mathematical point of view, the step of the elephant at time n + 1 > 1 is given by

with
( +1;  with probability
—1;  with probability 216;—_1’1

+J;  with probability =&
A, = —Jg  with probability %

+Jg_1 with probability =2

[ —J%' with probability L=

where I; and J; are the square matrices of order d defined by

1 0 --- 0 o 1 0 --- 0
0 1 0 0 0 0 1 :
]d: and Jd: Lo
o --- 0 1 0 o --- 0 0 1
o .- -+ 0 1 1 0 --- 0 0

One can observe that the permutation matrix .J; satisfies J¢ = I;. Therefore, the
position of the elephant at time n 4+ 1 > 1 is given by

(22) Sn+1 == Sn + Xn+1.

It follows from our very definition of the MERW that at any n > 1, X1 = A, X},
where A, is the random matrix described before while b, is a random variable
uniformly distributed on {1,...,n}. Moreover, as A, and b, are conditionally in-
dependent, we clearly have E[X,.|F,] = E[A,|E[X,,|F.] where F, stands for
the o-algebra, F,, = o(Xy,...,X,). Hence, we can deduce from the law of total
probability that at any time n > 1,

E(X,alF) = E4)YEXIF] P, - b,

1—p V1 —
— (p1, - J)- X
(pd 2d—1dn; k

1 /2dp—1 a
2.3 - —( )Sn:—Sn .
(2:3) n\2d—1 n s
where a is the fundamental parameter of the MERW,
_ 2dp—1

(2.4)

2d —1°



4 BERNARD BERCU AND LUCILE LAULIN

Consequently, we immediately obtain from (2.2) and (2.3) that for any n > 1,
(2.5) E [Spi1]Fn] = ¥Sn where Yo =14+ a
n

Furthermore,

H’Yk: ['(a+1+n)

Pl Fla+ DH'(n+1)

where I' is the standard Euler Gamma function. The critical value associated with
the memory parameter p of the MERW is

2d + 1
2. = .
( 6) Dd 1d

As a matter of fact, we will see at the end of Section 4 that the critical case corre-
sponds to the value a = 1/2,

1 1 1
@< 5 <=p<pa =5 p="pa a> 5 <=p>pa
Definition 2.1. The MERW (S,,) is said to be diffusive if p < pq, critical if p = pq,

and superdiffusive if p > py.

All our investigation in the three regimes relies on a martingale approach. To be
more precise, the asymptotic behavior of (S,,) is closely related to the one of the
sequence (M,,) defined, for all n > 0, by M,, = a,S,, where ay = 1, a; = 1 and, for
all n > 2,

n—1

(2.7) an:H%—l:%'

k=1
It follows from a well-known property of the Euler Gamma function that

. T(n+a)
25 Jin e =

Hence, we obtain from (2.7) and (2.8) that

(2.9) lim n%a, =T'(a+1).

n—o0

Furthermore, since a,, = Y,a,11, we can deduce from (2.5) that for all n > 1,
E [M,1|F.] = M, a.s.

It means that (M,) is a multi-dimensional martingale. Our goal is to extend the
results recently established in [3] to MERW. One can observe that our approach is
much more tricky than that of [3] as it requires to study the asymptotic behavior of
the multi-dimensional martingale (M,,).
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3. MAIN RESULTS

3.1. The diffusive regime. Our first result deals with the strong law of large
numbers for the MERW in the diffusive regime where 0 < p < p,.

Theorem 3.1. We have the almost sure convergence

1
(3.1) lim —S, =0 a.s.

n—oo N,

Remark 3.1. In fact, for any o > 1/2, we have the more precise result

1
lim —S,, =0 a.s.
n—oo N

Some refinements on the rates of convergence for the MERW are as follows.

Theorem 3.2. We have the quadratic strong law

1 «— 1 1
3.2 li B Y A p— .S.
(3:2) oo logn;k2 ok d(1 — 2a) ¢ @3

In particular,

I w1 1
. 1 = 8.
(3.3) im E 12 1= 2a) a.s

Moreover, we also have the law of iterated logarithm

. 15 ? 1
4 1 = 8.
(3.4) H:l_igp 2nloglogn (1 —2a) @9

Our next result is devoted to the asymptotic normality of the MERW in the diffusive
regime 0 < p < pg.

Theorem 3.3. We have the asymptotic normality

1 L 1
3.5 —5, 0, ————14).
(3:5) NG _>N< (1— 2a)d d>
Remark 3.2. We clearly have from (2.4) that
1 21
1—-2a 2d(1—2p)+1°

Hence, in the special case d = 1, the critical value pg = 3/4 and the asymptotic
variance

11
1—2a 3—4p

Consequently, we find again the asymptotic normality for the one-dimensional ERW
in the diffusive regime 0 < p < 3/4 recently established in [1],[3],[6].
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3.2. The critical regime. We now focus our attention on the critical regime where
the memory parameter p = pg.

Theorem 3.4. We have the almost sure convergence
1
3.6 lim ——8S,
(36) n00 Vnlogn
Remark 3.3. For any o > 1/2, we also have the more precise result
1
lim ———5, =0 a.s.

n—oo \/n(logn)* "

We continue with some refinements on the rates of convergence for the MERW.

=0 a.s.

Theorem 3.5. We have the quadratic strong law

1 - 1 1
3.7 li S.SE =27 .
(3.7) e loglognkz:; (klogk)2 F7k —g'd 07

In particular,

1 " |1Sk]1?
(3.8) lim > 196" _ a.s.

n—oc loglog n £~ (klogk)?

Moreover, we also have the law of iterated logarithm

: 1S I?
3.9 1 —
(3.9) lffoljp 2nlognlogloglogn

a.s.

Our next result concerns the asymptotic normality of the MERW in the critical
regime p = py.

Theorem 3.6. We have the asymptotic normality

1 L 1
3.10 —S5, = 0,-1).
( ) vnlogn N( d d)

Remark 3.4. As before, in the special case d = 1, we find again [1],[3],[6] the
asymptotic normality for the one-dimensional ERW

Sn L
Jiloan — N(0,1).

3.3. The superdiffusive regime. Finally, we get a handle on the more arduous
superdiffusive regime where p; < p < 1.

Theorem 3.7. We have the almost sure convergence
1

(3.11) lim —S, =1L a.s.
n—oo NG

where the limiting value L is a non-degenerate random vector. Moreover, we also
have the mean square convergence

(3.12) lim E[H%Sn—LHT —0.

n—o0
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Theorem 3.8. The expected value of L is E[L] = 0, while its covariance matriz is
given by
1

(3.13) E[LL"] = 20 1)r(2a)l‘i'

In particular,
1
(2a — 1)I'(2a)

Remark 3.5. Another possibility for the MERW 1is that, at time n = 1, the elephant
moves in one direction, say the first direction ey of the standard basis (e1, ..., eq)
of R?, with probability q or in one of the 2d — 1 remaining directions with the same
probability (1 — q)/(2d — 1), where the parameter q lies in the interval [0, 1]. After-
wards, at any time n > 2, the elephant moves exactly as before, which means that his
steps are given by (2.1). Then, the results of Section 3 holds true except Theorem

(3.14) E [I1L] =

3.8 where . o .
‘-
E[L] =

2 F(a+1)(2d—1>€1

and 1 2dg — 1 1 1
E[LLT| = = T_Zp I
[EL7] T'(2a +1) < 2d — 1 >(€1€1 d d) T e =T 2a)

which also leads to .

E [||L]]*] =

(2a — DI'(2a)

4. A MULTI-DIMENSIONAL MARTINGALE APPROACH

We clearly obtain from (2.1) that for any time n > 1, || X,,|| = 1. Consequently, it
follows from (2.2) that ||.S,|| < n. Therefore, the sequence (M,,) given, for all n > 0,
by M, = a,S,, is a locally square-integrable multi-dimensional martingale. It can
be rewritten in the additive form

(4.1) M, = Zakgk
k=1

since its increments AM, = M, — M, 4 satisfy AM,, = a,S, — a,_15,-1 = ane,
where €, = 5, — ¥,-15,-1. The predictable quadratic variation associated with
(M,,) is the random square matrix of order d given, for all n > 1, by

(4.2) (M) =Y E[AM(AM,)" | Fia] -

We already saw from (2.5) that E [g,41|F,]) = 0. Moreover, we deduce from (2.2)
together with (2.3) that

E[SunSTalF] = E[S.STIF] + 8,57 + E [Xun XLl

2
(4.3) _ (1 i g) 5,57 +E[XonXT,|F]  as.
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In order to calculate the right-hand side of (4.3), one can notice that for any n > 1,
d
X X7 = Ixi i€
i=1

where (e, ..., eq) stands for the standard basis of the Euclidean space R? and X is
the i-th coordinate of the random vector X,,. Moreover, it follows from (2.1) together
with the law of total probability that any time n > 1 and for any 1 < i < d,

P(Xiw 20F) = 3 P((AX) #0/F)
k=1

n

1< 1
= - D Iy poP(An = £10) + - D (1 =Ty P(A, = £Jy)
k=1

k=1

NX(i
which implies that for any 1 < i < d,
a . 1—a
(4.4) B[y, wl ] = SNX(0) + % 0.
where

Nf(z) = Z IX,iyéO
k=1

and the parameter a is given by (2.4). Hence, we infer from (4.3) and (4.4) that

a l1—a
(45) E (X XTalA] = 2o T s
where
d
(4.6) Sn= Y Ny (i)ese].
=1

One can observe the elementary fact that for all n > 1, Tr(X,) = n where Tr(%,)
stands for the trace of the positive definite matrix >,. Therefore, we obtain from
(4.3) together with (4.5) that

E [€n+155+1‘}—n} = E [SnHSg-i-l‘}—n] — VnSnSy

2 1-—
- (1 + —“)sns,{ B €l
n n d

(4.7) = %En e ; @

2
I; — (ﬂ) SnSf a.s.

n
which ensures that

a a2
E[lenl?F] = STr(Sa) + —=Tr(la) = () 1S

(4.8) = 1— (v, — 1)?|Sa]? a.s.
By the same token,

E [[lenil*F] =1 =3y = D ISull* = 203 — D2ISall* + 4w — 1)%n

1—a
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where, thanks to (4.5),

a l1—a
= E[(S, Xun15) = 25755, + Lo Ds,

It leads to
2(1 —a
Eflerall1F] = 1805 - D8, - 2(1 - 20 D) g, - 1ys, 2
4
(4.9) +§(% —1)287%,5,  as.

Therefore, as >,, < nly for the usual order of positive definite matrices, we clearly
obtain from (4.9) that

E [lenrlll 7] < 1=3(3 — 1Sl

2
+= (% — 1)2(2a(d )42 d) 1S as.

Hence, as a < 1, it ensures that
E [llensill*1Fn] < 1=3(m — DHISall* + 207 — 1)?]|S,]?

4 9 5 1\2
(4.10) < - 3((% 12| - 5) a.s.
Consequently, we obtain from (4.8) and (4.10) the almost sure upper bounds
4
(4.11)  supE [|len]?[Fe] <1 and supIE [lens1lI*|Fn] < 3 a.s.
n>0
Hereafter, we deduce from (4.2) and (4.7) that
n—1
(M), = aiEleie;] + ) az B [enrieg ] Fil
k=1
n—1
1 a 1—a
= Q%E]d—f_zai"‘l(EZk ( d )I (k’) Sk5k>
k=1

1 n n—1 1 1

(4.12) = SLy @ +ay ai, <EE’“ - Eld> — ¢
k=1 k=1
where
(o = a2n2_1(“’“+1)25 ST
n £ L kL -

Hence, by taking the trace on both sides of (4.12), we find that

(4.13) Zak Z(ak-H) 11|12

k=1
The asymptotic behavior of the multl—dlmensmnal martingale (M,,) is closely related

to the one of
=>i=Y (M)
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One can observe that we always have Tr(M), < v,. In accordance with Definition
2.1, we have three regimes. In the diffusive regime where a < 1/2,

v, (D(a+ 1))
(414) nh_}rgo nl—2a =/ where (= ﬁ
In the critical regime where a = 1/2,
v ™
( ) o logn (Fla+1)) 4

Finally, in the superdiffusive regime where a > 1/2, v,, converges to the finite value

. T+ DI(k+1)\2 o= (D (Dx (D
hmvn:;(<+><+>>:;(<><><>

n—00 I'la+k+1) — (a+1)p (a+ 1) k!

1,1,1
R A

where, for any a € R, (a)g = a(a+1)---(a+k—1) for k > 1, (a)g = 1 stands for
the Pochhammer symbol and 3F5 is the generalized hypergeometric function defined
by

() -3 e

5. PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

5.1. The diffusive regime.

Proof of Theorem 3.1. First of all, we focus our attention on the proof of the
almost sure convergence (3.1). We already saw from (4.13) that Tr(M), < wv,.
Moreover, we obtain from (4.14) that, in the diffusive regime where 0 < a < 1/2,
v, increases to infinity with the speed n'=2¢. On the one hand, it follows from the
strong law of large numbers for multi-dimensional martingales given e.g. by the last
part of Theorem 4.3.15 in [11] that for any v > 0,

(5.1) % = 0<<log Tr(M>n>1+fy> a.s

where A0 (M), stands for the maximal eigenvalue of the random square matrix
(M),,. However, as (M),, is a positive definite matrix and Tr(M),, < v,, we clearly
have Aae (M), < Tr(M), < v,. Consequenly, we obtain from (5.1) that

| M,]1? = o(vn(logv,) ™) a.s
which implies that
(5.2) | M, |)* = o(n'**(logn)**7) a.s.
Hence, as M,, = a,S,, it follows from (2.9) and (5.2) that for any v > 0,
19,]1> = o(n(logn)'*7) a.s.
which completes the proof of Theorem 3.1. 0
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Proof of Theorem 3.2. We shall now proceed to the proof of the almost sure
rates of convergence given in Theorem 3.2. First of all, we claim that

1 1
5.3 lim =%, = -1, S.
(53) Mhpte =gl e
where ¥, is the random square matrix of order d given by (4.6). As a matter of

fact, in order to prove (5.3) it is only necessary to show that for any 1 < i < d,

NX(i 1
(5.4) nh—>nolo "T(Z) =3 a.s.
For any 1 <1 < d, denote

N (i)
A, (1) = L
(i) = =2
One can observe that
. n ) 1
Apia(i) = — 1An(l) + n—HIX;‘LH#o

which leads, via (4.4), to the recurrence relation

(5.5) Apia (i) = nLH%A”(i) * d((ln:-al)) n ~1F 1

6n+1(i)

where 6,41(7) = Ixi o0 — E[lxi  o[Fn]. After straightforward calculations, the
solution of this recurrence relation is given by

(5.6) An(i) = —— (M) + u - @ >+ L)

na
n k=2

where
n

L(i) =) apdi(i).
k=2
However, (L,(7)) is a square-integrable real martingale with predictable quadratic
variation (L()), satisfying (L(i)), < v, a.s. Then, it follows from the standard
strong law of large numbers for martingales given by Theorem 1.3.24 in [11] that
(L,(7))* = O(v,logv,) a.s. Consequently, as na? is equivalent to (1 — 2a)v,, we
obtain that for any 1 <17 < d,

(5.7) lim —7L,(i) =0 a.s.

Furthermore, one can easily check from (2.9) that

R 1
(5.8) lim Z ay =

n—00 NQy, 1 1-— CL.

Therefore, we find from (5.6) together with (5.7) and (5.8) that for any 1 < <d,

(5.9) lim A, (i) = cli a.s.

n—0o0
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which immediately leads to (5.4). Hereafter, it follows from the conjunction of (3.1),
(4.7) and (5.4) that

1
(5.10) lim E [enﬂefﬂlfn] = -1 a.s.

n—o0 d
By the same token, we also obtain from (4.12) and Toeplitz lemma that

1 1
5.11 lim — (M), = =1 S.
(5.11) lm (M), = gls s
We are now in the position to prove the quadratic strong law (3.2). For any vector

u of RY denote M, (u) = (u, M,) and &,(u) = (u,&,). We clearly have from (4.1)

My (u) =~ axex(w).

Consequently, (M, (u)) is a square-integrable real martingale. Moreover, it follows

from (5.10) that
. 1
Jim B [lep (w)*|F0] = = [lul* as.

d
Hence, we can deduce from (4.11) and the Cauchy-Schwarz inequality that

4
sup E [|epp1 (u)|[*|Fn] < §||u||4 a.s.
n>0

Furthermore, we clearly have from (2.9) and (4.14) that

S N

lim nf, =1-2a where fn=
n—oo

Y

518

which of course implies that f,, converges to zero. Therefore, it follows from the
quadratic strong law for real martingales given e.g. in Theorem 3 of [4], that for
any vector u of RY,

I < M?2(u) 1
5.12 l S A(FEE) =Sl as
(5.12) e log vy, p Ji Vg d”u” o
Consequently, we find from (4.14) and (5.12) that
LSy (20

Hereafter, as M,, = a,,S,, and n?a? is equivalent to (1—2a)?v2, we obtain from (5.13)
that for any vector u of R,

1 n
5.14 li
(5.14) no360 logn p k2

1 1
—UTSkSgU = m”'&”z a.s.

By virtue of the second part of Proposition 4.2.8 in [11], we can conclude from (5.14)
that

1 — 1 1
5.15 1i Sy S o A —— S.
(5.15) n=300 lognkz:;k:QSkSk d1—2a) ¢ *°



ON THE MULTI-DIMENSIONAL ELEPHANT RANDOM WALK 13

which completes the proof of (3.2). By taking the trace on both sides of (5.15), we
immediately obtain (3.3). Finally, we shall proceed to the proof of the law of iterated
logarithm given by (3.4). We already saw that alv.? is equivalent to (1 — 2a)*n =2
It ensures that

+oo 4

(5.16) 3 % < +00.
n=1 "

Hence, it follows from the law of iterated logarithm for real martingales due to Stout
21],[22], see also Corollary 6.4.25 in [11], that for any vector u of R%,

li _ 1/2M lim inf _ 1/2M
liasgp(%nloglogvn) nw) = - e <2funloglogvn> n(v)

(5.17) = a.s.

Fll
—||u
Vd
Consequently, as M, (u) = a,(u,S,), we obtain from (4.14) together with (5.17)
that

1 1/2 1 1/2
lim sup(—) (u,S,) = —lim inf(—) (u, Sp)
n—soo \2nloglogn n—oo \2nloglogn
1
= ——||u| a.s.
d(1 —2a)
In particular, for any vector u of R?,
1
5.18 li — (1, 8,) = ———||u|)? 8.
(5.18) B ™ log logn<u’ ) d(1 — 2a) Il o

However,
d

1502 = 3 er, S,

i=1

where (e1,...,e4) is the standard basis of R?. Finally, we deduce from (5.18) that

lim sup AT — 1
nsoo 2nloglogn (1 —2a)

a.s.
which achieves the proof of Theorem 3.2. O
5.2. The critical regime.

Proof of Theorem 3.4. We already saw from (4.15) that in the critical regime
where a = 1/2, v, increases slowly to infinity with a logarithmic speed logn. We
obtain once again from the last part of Theorem 4.3.15 in [11] that for any v > 0,

IMall* = o(vn(logva)'™7)  aus
which leads to
(5.19) |M,,||> = o(log n(loglogn)'*7) a.s.

However, we clearly have from (2.9) with a = 1/2 that

(5.20) lim na? = %

n—oo
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Consequently, as M,, = a,S,, we deduce from (5.19) and (5.20) that for any v > 0,
15,]1? = o(nlogn(loglogn)'*") a.s.

which completes the proof of Theorem 3.4. O

Proof of Theorem 3.5. The proof of Theorem 3.5 is left to the reader as it follows
the same lines as that of Theorem 3.2. O

5.3. The superdiffusive regime.

Proof of Theorem 3.7. We already saw from (4.16) that in the superdiffusive
regime where 1/2 < a < 1, v, converges to a finite value. As previously seen,
Tr(M), < v,. Hence, we clearly have

lim Tr(M), < oo a.s.

n—oo
Therefore, if

M,
5.21 Ln= =",
(5:21) I'(a+1)
we can deduce from the second part of Theorem 4.3.15 in [11] that
(5.22) lim M, =M and lim L, =1L a.s.
n—o0 n—o0

where the limiting values M and L are the random vectors of R? given by

() 1 0o
M = d L=—— .
;aksk an F(a T 1) ;akek

Consequently, as M,, = a,S,, (3.11) clearly follows from (2.9) and (5.22) We now
focus our attention on the mean square convergence (3.12). As My = 0, we have
from (4.1) and (4.2) that for all n > 1,

E[| Mal*) = Y E[|AM[*) = E[Tr(M),)] < v,.

Hence, we obtain from (4.16) that

1,1,1
2 < ( ) >
S E[IIMIF] < aFa(, 7 041 [L) <00

which means that the martingale (M,,) is bounded in IL?. Therefore, we have the
mean square convergence

lim E[||M, — M|]*] =0,

n—oo

which clearly leads to (3.12). O
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Proof of Theorem 3.8. First of all, we clearly have for all n > 1, E[M,] = 0
which implies that E[M] = 0 leading to E[L] = 0. Moreover, taking expectation on
both sides of (4.3) and (4.5), we obtain that for all n > 1,

2
E[SwiSEa] = (1+)E [S.87] +E [Xar XL]

B 2a mooa (1—a)
(5.23) = (14 ?)E [5a57] + 2E[Za] + —
However, we claim that
(5.24) E[S,] = %Id.

As a matter of fact, taking expectation on both sides of (5.6), we find that for any
1<i<d,

(5.25) E[A ()] = —— (E[Al(i)] L v %) 3 ak.).

na,

On the one hand, we clearly have

&.H—‘

E[A:(2)] =

On the other hand, it follows from Lemma B.1 in [3] that

|
—

= = Tle+1)rk) T+ D)r(k+1)
2m = ) k+a)

k=2 = Tk+atl)
1 Fla+1)I'(n+1) (1 —nay)

2 - (1= - .
(5-26) @1 < Ta+n) @-1
Consequently, we can deduce from (5.25) and (5.26) that for any 1 < i < d,

, 1 /1 (1-nay,) 1

2 E[A (1) = — (= — ) _ 2

(527 M= G =) =

Therefore, we get from (4.6) and (5.27) that

d
[Za] = n 3 ElMu(iese] = SN el =

i=1
Hereafter, we obtain from (5.23) and (5.24) that

2 1
(5.28) E[Sp1S7,,] = (1 + ?“)]E [SuST] + =1
It is not hard to see that the solution of this recurrence relation is given by
I'(n + 2a) 1 e~ T(2a+ 1)I(k + 1)
E[S,S] = [S187] + = 1
[0S F(2a+1)F()< ! +dz k+2a+1) ¢

I(n+2a) (< TI(k L,
(5:29) ~ T(n) ( T(k + 2a) ) ak

k=1
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since
1
Therefore, it follows once again from Lemma B.1 in [3] that
n I'(n + 2a) 1
5.30 E[S.5] = —1) =14
(5:50) [525] (2a—1) (F(n—i—l)F(Za) ) d*

Hence, we obtain from (5.21) together with (5.30) that

2 ['(n + 2a) 1
E[L,L7] = Do 1)
(L] (2a — 1)(D(a + 1))? (F(n +1)I'(2q) ) d
n T(n) \°/ T(n+2a) 1
5.31 = —1) =1
(5:31) (2a —1) (F(n + a)> (F(n + 1)I(2a) 4’
Finally, we find from (3.12) and (5.31) that
1
lim E[L,LT] =E[LL"] = I
am BlLnL,) = BILL ] = O Ty @a)
which achieves the proof of Theorem 3.8. O

6. PROOFS OF THE ASYMPTOTIC NORMALITY RESULTS

6.1. The diffusive regime.

Proof of Theorem 3.3. In order to establish the asymptotic normality (3.5), we
shall make use of the central limit theorem for multi-dimensional martingales given
e.g. by Corollary 2.1.10 of [11]. First of all, we already saw from (5.11) that

1 1
(6.1) lim — (M), = =14 a.s.

n—oo Un d

Consequently, it only remains to show that (M,,) satisfies Lindeberg’s condition, in
other words, for all € > 0,

1 & P
. D E [IAMPLyar ey Fr-1] — 0.
" k=1

We have from (4.11) that for all € > 0

n

E [|AM||*| Fr-1]

1 n
o > B [ AMPLyans, jse o Fiet] <
" k=1 k=1

2,2
e2?

1 n
sup E [[lex]|*Fri] 2,2 > a

<
1<k<n n
n
4
< 4
— 3e2p? -

n k=1
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However, we already saw from (5.16) that

+o0o 4
a’n
E — < +00.
v,
n=1 "

Hence, it follows from Kronecker’s lemma that

which ensures that Lindeberg’s condition is satisfied. Therefore, we can conclude
from the central limit theorem for martingales that

1 L 1
2 M, ( oI )
As M,, = a,,S,, and v/na, is equivalent to \/v,(1 — 2a), we find from (6.2) that
1 1

7 T30

which completes the proof of Theorem 3.3. O

S, iu\f(o,

6.2. The critical regime.

Proof of Theorem 3.6. Via the same lines as in the proof of (5.11), we can deduce
from (3.6), (4.13) and (4.15) that in the critical regime

1 1
(6.3) lim — (M), = =14 a.s.

Moreover, it follows from (4.15) and (5.20) that a?v; ! is equivalent to (nlogn)~!.

It implies that

k=1 T

As previously seen, we infer from (6.4) that (M,,) satisfies Lindeberg’s condition.
Therefore, we can conclude from the central limit theorem for martingales that

1 L 1
6. M, £ (0, Ly} )
(6.5) NG N (0, = 1a
Finally, as M, = a,S, and a,v/nlogn is equivalent to /v,, we obtain from that
(6.5) that
1

vnlogn

which achieves the proof of Theorem 3.6. O

S, L5 N0, 1),

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest.



18 BERNARD BERCU AND LUCILE LAULIN

REFERENCES

[1] BAUR, E. AND BERTOIN, J. Elephant Random Walks and their connection to Pélya-type urns.
Phys. Rev. FE 94, 052134 (2016).

[2] BOYER, D., RoMo-CRruz, J. C. R. Solvable random-walk model with memory and its relations
with Markovian models of anomalous diffusion. Phys. Rev. E 90, 042136 (2014).

[3] BERCU, B. A martingale approach for the elephant random walk. J. Phys. A: Math. Theor.
51, 015201 (2018).

[4] BErRCU, B. On the convergence of moments in the almost sure central limit theorem for mar-
tingales with statistical applications. Stochastic Process. Appl. 111, 1 (2004), pp. 157-173.

[6] BUSINGER, S. The shark random swim (Lévy flight with memory). J. Stat.. Phys. 172, (2018),
pp. 701-717.

[6] CoLETTI, C. F., GAvA, R., ScHUTZ, G. M. Central limit theorem and related results for the
elephant random walk. J. Math. Phys. 58, 053303 (2017).

[7] CoLETTI, C. F., GAvA, R., ScHUTZ, G. M. A strong invariance principle for the elephant
random walk. J. Stat. Mech., 123207 (2017).

[8] CrEssoNI, J. C., VISWANATHAN, G. M., DA Smva, M. A. A., Exact solution of an
anisotropic 2D random walk model with strong memory correlations. J. Phys. A: Math. Theor.
46, 505002 (2013).

[9] CrEssonI, J. C., DA Sitva, M. A. A., VISWANATHAN, G. M. Amnestically induced persis-
tence in random walks. Phys. Rev. Let. 98, 070603 (2007).

[10] DA Siva, M. A. A., CrEssoONI, J. C., SCHUTZ, G. M., VISWANATHAN, G. M., TRIMPER,
S. Non-Gaussian propagator for elephant random walks. Phys. Rev. E 88, 022115 (2013).

[11] DurLo, M., Random iterative models, Vol. 34 of Applications of Mathematics. Springer-
Verlag, Berlin, 1997.

[12] JANsON, S., Functional limit theorems for multitype branching processes and generalized
Pélya urns. Stochastic Process. Appl. 110, 2 (2004), pp. 177-245.

[13] KUMAR, N., HARBOLA, U., LINDENBERG, K. Memory-induced anomalous dynamics: Emer-
gence of diffusion, subdiffusion, and superdiffusion from a single random walk model. Phys.
Rev. E 82, 021101 (2010).

[14] HARRIS, R. Random walkers with extreme value memory: modelling the peak-end rule. New
J. Phys. 17, 053049 (2015).

[15] HaLL, P., AND HEYDE, C. C. Martingale limit theory and its application. Academic Press
Inc., New York, 1980.

[16] HArRBOLA, U., KuMAR, N., LINDENBERG, K. Memory-induced anomalous dynamics in a
minimal random walk model. Phys. Rev. E 90, 022136 (2014).

[17] KURSTEN, R. Random recursive trees and the elephant random walk. Phys. Rev. E 95, 032111
(2016).

[18] Lyu, J., XIN, J., Yu, Y. Residual diffusivity in elephant random walk models with stops.
arXiv:1705.02711, (2017).

[19] PArRAAN, F. N. C. AND ESGUERRA, J. P. Exact moments in a continuous time random walk
with complete memory of its history. Phys. Rev. E 74, 032101 (2006).

[20] ScHUTZ, G. M., AND TRIMPER, S. Elephants can always remember: Exact long-range mem-
ory effects in a non-Markovian random walk. Phys. Rev. E 70, 045101 (2004).

[21] StouT, W. F. A martingale analogue of Kolmogorovs law of the iteraded logarithm. Z.
Wahrscheinlichkeitstheorie 15 (1970), pp. 279-290.

[22] STouT, W. F., Almost sure convergence, Probability and Mathematical Statistics, Vol. 24,
Academic Press, New York-London, 1974.

UNIVERSITE DE BORDEAUX, INSTITUT DE MATHEMATIQUES DE BOoRDEAUX, UMR 5251, 351
COURS DE LA LIBERATION, 33405 TALENCE CEDEX, FRANCE.

ECOLE NORMALE SUPERIEURE DE RENNES, DEPARTEMENT DE MATHEMATIQUES, CAMPUS
DE KER LANN, AVENUE ROBERT SCHUMAN, 35170 Bruz, FRANCE.



