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We investigate the asymptotic behaviour of the recursive Nadaraya–Watson estimator for the estimation
of the regression function in a semiparametric regression model. On the one hand, we make use of the
recursive version of the sliced inverse regression method for the estimation of the unknown parameter
of the model. On the other hand, we implement a recursive Nadaraya–Watson procedure for the estima-
tion of the regression function which takes into account the previous estimation of the parameter of the
semiparametric regression model. We establish the almost sure convergence as well as the asymptotic
normality for our Nadaraya–Watson estimate. We also illustrate our semiparametric estimation procedure
on simulated data.

Keywords: semi-parametric regression; recursive estimation; Nadaraya–Watson estimator; sliced inver-
sion regression
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1. Introduction

The goal of this paper is to investigate the asymptotic behaviour of the recursive Nadaraya–
Watson estimator of the regression function f in the semiparametric regression model given, for
all k ≥ 1, by

Yk = f (θ ′Xk) + εk , (1)

where (Xk) is a sequence of independent and identically distributed random vectors of R
p and

the driven noise (εk) is a real martingale difference sequence independent of (Xk). We assume in
all the sequel that the unknown p-dimensional parameter θ �= 0. On the one hand, we make use
of the recursive version of the sliced inverse regression (SIR) method, originally proposed by
Li [1] and Duan and Li,[2] in order to estimate θ . On the other hand, we estimate the unknown
regression function f via a recursive Nadaraya–Watson estimator which takes into account the
previous estimation of the parameter θ . Our purpose is precisely to investigate the asymptotic
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2 B. Bercu et al.

behaviour of the recursive Nadaraya–Watson estimator of f . One can observe that single index
models have been extensively studied in the literature, see for instance Horowitz.[3]

We wish to point out that we propose two recursive estimation procedures for the estimation
of θ and f . As matter of fact, in many practical situations, where the data come online with
relatively high speed, it is more convenient to implement recursive estimation procedure. It is
the case for high-frequency financial data where one should wait the best time to trade in the
stock market. It is also the case for real-time electricity data where it is important to forecast
electricity peak consumption times.

One can find a wide range of literature on nonparametric estimation of a regression function.
We refer the reader to [4–7] for some excellent books on density and regression function esti-
mation. In the classical situation without any parameter θ , the almost sure convergence of the
Nadaraya–Watson estimator [8,9] was proved by Noda [10] and its asymptotic normality was
established by Schuster.[11] Moreover, Choi et al. [12] proposed three data-sharpening versions
of the Nadaraya–Watson estimator in order to reduce the asymptotic bias in the central limit
theorem as well as the asymptotic mean-squared error. In our situation, we propose to make
use of a recursive Nadaraya–Watson estimator [13] of f which takes into account the previous
estimation of the parameter θ . It is given, for all x ∈ R

p and n > p, by

f̂n(x) =
∑n

k=p+1 Wk(x)Yk∑n
k=p+1 Wk(x)

(2)

with

Wk(x) = 1

hk
K

(
x − θ̂ ′

k−1Xk

hk

)
,

where the kernel K is a chosen probability density function and the bandwidth (hn) is a sequence
of positive real numbers decreasing to zero, such that nhn tends to infinity. For the sake of sim-
plicity, we propose to make use of hn = 1/nα with α ∈]0, 1[. The main difficulty arising here is
that we have to deal with the recursive SIR estimator θ̂n of θ inside the kernel K. Note that the
SIR estimator θ̂n in its recursive version is well defined for n > p since it is necessary to invert
the sample covariance matrix of the Xk’s, see next section for details.

The paper is organized as follows. In Section 2, we recall some results on the recursive
SIR estimator θ̂n. Our main results on the asymptotic behaviour of f̂n are given in Section 3.
Under standard regularity assumptions on the kernel K, we establish the almost sure pointwise
convergence of f̂n together with its asymptotic normality. Section 4 contains some numerical
experiments on simulated data, illustrating the good performances of our semiparametric estima-
tion procedure. A conclusion is provided in Section 5. All the technical proofs are postponed to
Appendices 2 and 3.

2. On the recursive SIR method

From the seminal work of Li [1] and Duan and Li [2] devoted to the SIR theory, we know that
the eigenvector associated with the maximum eigenvalue of the matrix �−1� is collinear with
θ where � = V(Xk) is positive definite, � = V(E[Xk | T(Yk)]) and T is a slicing of the range
of Yk into H non overlapping slices s1, . . . , sH . One can observe that since the link function f is
unknown in the semiparametric regression model (1), the parameter θ is not entirely identifiable.
Only its direction can be identified without assuming additional constraints. Li [1] called effec-
tive dimension reduction (EDR), any direction collinear with θ . One can note that the notion of
EDR space was also clarified by Cook and his collaborators in their numerous papers introducing
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Statistics 3

the notions of central subspace and central mean subspace, see for details Cook [14] or Cook and
Li.[15] Moreover, the SIR theory mainly relies on the so-called linearity condition (LC) which
imposes that for all b ∈ R

p, E[b′Xk | θ ′Xk] is linear in θ ′Xk . It means that one can find α, β ∈ R

such that

E[b′Xk | θ ′Xk] = α + βθ ′Xk . (LC)

This condition is required to hold only for the true parameter θ . Since θ is unknown, it is not pos-
sible in practice to verify it a priori. Hence, we can assume that (LC) holds for all possible values
of θ , which is equivalent to elliptical symmetry of the distribution of the identically distributed
sequence (Xk). Finally, Hall and Li [16] mentioned that (LC) is not a severe restriction because
(LC) holds to a good approximation in many problems as the dimension p of the regression vec-
tor Xk increases. Chen and Li [17] or Cook and Ni [18] also provide interesting discussions on
the linearity condition.

The SIR estimates based on the first inverse moment have been studied extensively in the liter-
ature, see for instance Prendergast [19] or Szretter and Yohai [20] among others. In order to avoid
the choice of a slicing in SIR, pooled slicing, kernel or spline versions of SIR have been inves-
tigated, see for example Zhu and Yu,[21] Wu [22] or Azais et al. [23] Note that these methods
are hard to implement compared to the basic SIR approach and are often computationally slow.
Sparse SIR has been proposed, see for example Li and Nachtsheim.[24] Regularized versions for
SIR have also been proposed for high-dimensional covariates, see for instance Scrucca [25] or
Li and Yin.[26] Hybrid methods of inverse regression-based algorithms have been studied, see
for instance Zhu et al. [27]

However all these methods are not recursive. In the following, we will describe a recursive
way to obtain an EDR direction estimated with SIR approach.

In order to obtain a recursive version of an EDR direction estimated with SIR approach, we
need an analytic expression of the maximum eigenvector of �−1�. It is easily tractable when the
range of Yk is divided into two non overlapping slices s1 and s2. Hereafter we shall assume that
H = 2. In this special case, it is not hard to see that � = p1z1z′

1 + p2z2z′
2 where ph = P(Yk ∈ sh)

and zh = E[Xk | Yk ∈ sh] − E[Xk] with ph �= 0 for h = 1, 2. Moreover, it is straightforward to
show that the eigenvector associated with the maximum eigenvalue of �−1� can be written as

θ̃ = �−1(z1 − z2),

see Appendix 1 for details. This vector θ̃ is therefore an EDR direction. For the sake of simplicity,
we identify in all the sequel the EDR direction θ̃ with θ . Our purpose is now to propose an
estimator of the EDR direction θ . First of all, let us recall the non recursive SIR estimator θ̃n of
θ given by Nguyen and Saracco.[28] The estimator θ̃n can be easily obtained from the sample
(X1, Y1), . . . , (Xn, Yn) by substituting the theoretical moments by their sample counterparts. More
precisely, θ̃n is given by

θ̃n = �−1
n (z1,n − z2,n), (3)

where

�n = 1

n

n∑
k=1

(Xk − X̄n)(Xk − X̄n)
′, X̄n = 1

n

n∑
k=1

Xk (4)

and, for h = 1, 2, zh,n = mh,n − X̄n where

mh,n = 1

nh,n

n∑
k=1

XkI{Yk∈sh}, nh,n =
n∑

k=1

I{Yk∈sh}. (5)

Next, we focus our attention on the recursive SIR estimator θ̂n of θ proposed by Nguyen and
Saracco.[28] We split the sample into two parts: the subsample of the first (n − 1) observations
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4 B. Bercu et al.

(X1, Y1), . . . , (Xn−1, Yn−1), and the new observation (Xn, Yn). On the one hand, the inverse of the
matrix �n given by Equation (6) may be recursively calculated via the Riccati equation,[13]

�−1
n = n

n − 1
�−1

n−1 − n

(n − 1)(n + ρn)
�−1

n−1	n	
′
n�

−1
n−1, (6)

where ρn = 	′
n�

−1
n−1	n and 	n = Xn − X̄n−1. On the other hand, we can also obtain the recursive

form of zh,n. As a matter of fact, we have for h = 1, 2,

zh,n =

⎧⎪⎨
⎪⎩

zh∗,n−1 − 1

n
	n + 1

nh∗,n−1 + 1
	h∗,n if h = h∗,

zh,n−1 − 1

n
	n otherwise,

(7)

where h∗ denotes the slice containing the observation Yn and 	h∗,n = Xn − mh∗,n−1. We deduce
from Equations (6) and (7) that the recursive SIR estimator θ̂n is given by

θ̂n =
(

n

n − 1

)
θ̂n−1 − n

(n − 1)(n + ρn)
�−1

n−1	n	
′
nθ̂n−1

− (−1)h∗
, n

(nh∗,n−1 + 1)(n − 1)

(
�−1

n−1 − 1

n + ρn
�−1

n−1	n	
′
n�

−1
n−1

)
	h∗,n. (8)

Note that the recursive SIR procedure can only be used when n > p in order to have an initial
value for the inverse of �n−1, the corresponding initial value of θ̂n−1 being given by θ̃n−1.

The SIR estimators θ̃n and θ̂n share the same asymptotic properties, previously established in
[28], under the following classical hypothesis.
(H1): The random vectors (Xk) are square integrable, independent and identically distributed and
(X1, Y1), . . . , (Xn, Yn) are independently drawn from Equation (1).

Lemma 2.1 Assume that (LC) and (H1) hold. Then, θ̂n converges a.s. to θ ,

‖θ̂n − θ‖2 = O
(

log(log n)

n

)
a.s. (9)

In addition, we also have the asymptotic normality

√
n(θ̂n − θ)

L−→ N (0, 
), (10)

where the limiting covariance matrix 
 may be explicitly calculated.

Since this recursive SIR estimator is based on H = 2 slices, only one EDR direction can be
estimated. When we consider a number H of slices greater or equal to 3, it seems not possible to
obtain an analytical expression of the EDR direction, that is of the major eigenvector of �−1�

where

� =
H∑

h=1

phzhz′
h.

Bercu et al. [29] provided a recursive estimator of �−1�, but not of the corresponding major
eigenvector. They also proposed a new method called SIRoneslice that can be used when the
regression model is a single index model. The SIRoneslice estimator of the EDR direction is
based on the use of only one ‘optimal’ slice chosen among the H slices. They provided its
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Statistics 5

recursive version and established some asymptotic results for the SIRoneslice approach. Good
numerical performances have been obtained on simulations and the main advantage of using
recursive versions of the SIR and SIRoneslice methods is clearly the gain in term of computing
times.

In this paper, we will show that the recursive SIR procedure based on H = 2 slices is clearly
faster than the standard SIR approach based on H = 2 slices. The reader can also find numerical
results on these comparisons in [28]. One explanation of this gain is certainly due to the recursive
calculation of the p × p matrix �−1

n . In Section 4, we provide the computing times for our pro-
posed estimator of f (θ ′x), based on the recursive SIR estimator of θ and the associated recursive
Nadaraya–Watson estimator of f .

3. Main results

Our purpose is to investigate the asymptotic properties of the recursive Nadaraya–Watson esti-
mator f̂n of the link function f given by Equation (2). First of all, we assume that the kernel K is a
positive symmetric function, bounded with compact support, twice differentiable with bounded
derivatives, satisfying

∫
R

K(x) dx = 1 and
∫

R

K2(x) dx = ν2.

Moreover, it is necessary to add the following standard hypothesis.
(H2): The probability density function g associated with (Xn) is continuous, positive on all R

p,
twice differentiable with bounded derivatives.

(H3): The link function f is Lipschitz.
Our first result deals with the almost sure convergence of the estimator f̂n.

Theorem 3.1 Assume that (LC) and (H1) to (H3) hold. In addition, suppose that the sequence
(Xn) has a finite moment of order a > 2. Then, for any x ∈ R, we have

lim
n→∞ f̂n(x) = f (x) a.s. (11)

More precisely, if the bandwidth (hn) is given by hn = 1/nα with 0 < α < 1
3 ,

f̂n(x) − f (x) = O(n−α) + O
(

n1/a

√
log(log n)

n

)
a.s. (12)

while, if 1
3 ≤ α < 1,

f̂n(x) − f (x) = O(
√

nα−1 log n) + O
(

n1/a

√
log(log n)

n

)
a.s. (13)

Proof The proof is given in Appendix 2. �

Remark 3.1 In the particular case where (Xn) is a sequence of independent random vectors of
R

p sharing the same N (m, �) distribution where the covariance matrix � is positive definite, we
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6 B. Bercu et al.

can replace n1/a by log n into Equations (12) and (13). Consequently, for any x ∈ R, we obtain
that if 0 < α < 1

3 ,

f̂n(x) − f (x) = O(n−α) a.s.

while, if 1
3 ≤ α < 1,

f̂n(x) − f (x) = O(
√

nα−1 log n) a.s.

The asymptotic normality of the estimator f̂n is as follows.

Theorem 3.2 Assume that (LC) and (H1) to (H3) hold. In addition, suppose that the sequence
(Xn) has a finite moment of order a = 6 and that the sequence (εn) has a finite conditional
moment of order b > 2. Then, as soon as the bandwidth (hn) satisfies hn = 1/nα with 1

3 < α < 1,
we have for any x ∈ R, the pointwise asymptotic normality

√
nhn(f̂n(x) − f (x))

L−→ N
(

0,
σ 2ν2

(1 + α)h(θ , x)

)
, (14)

where h(θ , x) stands for the probability density function associated with (θ ′Xn).

Proof The proof is given in Appendix 3. �

4. Numerical simulations

The goal of this section is to illustrate via some numerical experiments the theoretical results
of Section 3. We will provide the numerical behaviour of our recursive estimators combining
the recursive Nadaraya–Watson estimator of the link function f together with the recursive SIR
estimator of the parameter θ . First of all, we describe in Section 4.1 the simulated model used
in the numerical study and we present the estimation procedure, in particular the choice of the
bandwidth parameter α by a cross-validation criterion.

We compare in Section 4.2 the computing times of the four methods and we will observe that
the recursive procedures are the fastest ones as it was expected.

Then, we illustrate in Sections 4.3 and 4.4 the almost sure convergence and the asymptotic
normality of our recursive Nadaraya–Watson estimator of f .

4.1. Simulated model and estimation procedures

We consider the semiparametric regression model given, for all k ≥ 1, by

Yk = f (θ ′Xk) + εk , (M)

where the link function f is defined, for all x ∈ R, by

f (x) = x exp

(
3x

4

)
.

The parameter θ belongs to R
p with p = 10 and it is given by

θ = 1√
10

(1, 2, −2, −1, 0, . . . , 0).
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Figure 1. Scatterplots of {(θ ′X1, Y1), . . . , (θ ′Xn, Yn)} (on the left) and {(θ̂ ′
nX1, Y1), . . . , (θ̂ ′

nXn, Yn)} (on the right), when
p = 10, � = Ip and = 1000.

Moreover, (Xk) is a sequence of independent random vectors of R
p sharing the same N (0, �)

distribution, while (εk) is a sequence of independent random variables with standard N (0, 1)

distribution, independent of (Xk). We consider two kinds of covariance matrix � : � = Ip and
� = VV ′ + 0.1Ip where the components vkl of the p × p matrix V are generated from N (0, 0.3)

distribution. In Figure 1, we present two scatterplots for a sample of size n = 1000 generated
from model (M) with � = Ip. On the left side, one can observe the data in the ‘true’ reduction
subspace, that is the scatterplot of (θ ′X1, Y1), . . . , (θ ′Xn, Yn) based on the ‘true’ EDR direction θ .
On the right side, we plot the data obtained from the estimated EDR direction θ̂n calculated via
our recursive SIR procedure, that is the scatterplot of (θ̂ ′

nX1, Y1), . . . , (θ̂ ′
nXn, Yn). One can clearly

notice that the EDR direction has been well estimated.
For the recursive Nadaraya–Watson estimator f̂n of f , we have chosen the well-known

Epanechnikov kernel

K(x) = 3
4 (1 − x2)I{|x|≤1}

and the bandwidth hn = 1/nα with 0 < α < 1. We now need to evaluate an optimal value for the
smoothing parameter α. The problem of deciding how much to smooth is of great importance
in nonparametric regression. We propose to make use of the optimal data-driven bandwidth α

which minimizes the cross-validation criterion

CV(α) =
n∑

k=p+1

(Yk − Ŷk,α)2 where Ŷk,α = f̂k−1(θ̂
′
k−1Xk).

To illustrate the numerical behaviour of our proposed cross-validation criterion, we consider sim-
ulated samples of sizes n = 200, 500, 1000 and 2000 generated from model (M ) with p = 10.
In Figure 2, we present the corresponding CV(α) criteria. We can observe that the CV(α) func-
tions are all convex and the corresponding optimal data-driven bandwidth α lies into the interval
[0.33, 0.38]. Consequently, in all Section 4, we have chosen the optimal value α = 0.35.

4.2. Comparison of computing times between non recursive and recursive procedures

In this part of the simulation study, we only focus on the computing times of two estimators: the
proposed recursive estimator and the corresponding non recursive one, based on usual SIR in the
first step and classical Nadaraya–Watson estimator in the second step.
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8 B. Bercu et al.
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Figure 2. Examples of the cross-validation function CV(α) for the simulated sample of fixed sizes n = 200, 500, 1000
and 2000 generated from model (M ) with p = 10.

For each method and for a given simulated sample of size n, we measure in seconds the
computing (CPU) time needed to calculate the corresponding estimators f̂n(θ̂ ′

nx) of f (θ ′x) for n
going from N0 = p + 1 to N , where θ̂n and f̂n are the estimators of f and θ only based on the first
n observations of the sample. More precisely, the computing time is the global time needed to
calculate the N − N0 + 1 estimators: f̂n(θ̂ ′

N0
x), f̂n(θ̂ ′

N0+1x), . . . , f̂n(θ̂ ′
N−1x) and f̂n(θ̂ ′

N x).
For various values of p and N , we generate B = 100 replicated samples from model (M).

Then, for each method and each simulated sample, we estimate f (θ ′x) for 10 values of x, ran-
domly generated from the uniform distribution on [−1.5; 1.5]p, using the two above-mentioned
estimators.

In Table 1, we give the means of computing times evaluated on the B = 100 replicated samples
for different values of p = 5, 10, 25, 50 and N = 500, 1000 and 2000.

From the reading of Table 1, one can give the following comments. For both methods, not
surprisingly, the larger are the dimension p or the size N , the larger is the mean of computing
times. However the recursive approach clearly provides much smaller mean of computing times
in comparison with the non recursive approach. One explanation of this gain in term of comput-
ing time is certainly due to the recursive calculation of the p × p matrix �̂−1

n in the SIR step.
Note that when the dimension p increases, the computing time in mean of recursive method only
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Statistics 9

slightly increases contrary to the non recursive one: for instance, the computing time is multi-
plied by around 2 from p = 5 to p = 50 for the recursive approaches, whereas it is multiplied
by more than 5 for non recursive method. According to size N , the computing time increases
faster for the non recursive approach than for the recursive one (for which the computing time
is multiplied by two when the sample size doubles). To conclude, we clearly exhibit the great

Table 1. Mean of computing (CPU) times in seconds, over B = 100 replicated samples from the simulated model
(M) for different values of p and N , for calculating estimates f̂n(θ̂ ′

nx) of f (θ ′x) (for n going from p + 1 to N) with our
proposed recursive method and the corresponding non recursive one.

p = 5 p = 10 p = 25 p = 50

N = 500 Recursive estimator 0.25 0.27 0.31 0.48
Non recursive estimator 1.52 1.88 3.31 7.44

N = 1000 Recursive estimator 0.51 0.52 0.63 1.02
Non recursive estimator 3.33 4.32 8.05 18.63

N = 2000 Recursive estimator 1.02 1.05 1.28 2.08
Non recursive estimator 7.88 10.77 21.95 51.38
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Figure 3. Almost sure convergence of f̂n(θ̂ ′
nx) to f (θ ′x) for 10 different values of x, when p = 10 and � = Ip.
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10 B. Bercu et al.

advantage of using the proposed recursive approach in terms of computing times: for instance for
high-dimensional data (p = 50 and N = 2000), the recursive approach is around 25 times faster
than the non recursive approach.

4.3. Almost sure convergence

The good numerical performances of the recursive SIR estimator θ̂n were already illustrated
in [28,29]. In order to keep this section brief, we only focus our attention on the almost sure
convergence of f̂n. We generate N = 1000 samples of different sizes n = 200, 500, 1000, 2000
from model (M) with p = 10. For each sample and each kind of matrix �, we calculate the
estimation f̂n(θ̂ ′

nx) of f (θ ′x) for 10 different values x1, . . . , x10 of x ∈ R
p, randomly generated

from the uniform distribution on [−1.5; 1.5]10. To obtain pleasant-looking graphics, we have
sorted the xj’s in ascending order according to their corresponding ‘true’ value f (θ ′xj), see the
red dots in Figures 3 and 4.

The boxplots of the f̂n(θ̂ ′
nxj)’s are respectively given in Figure 3 (resp. Figure 4) when � = Ip

(resp. when � = VV ′ + 0.1Ip). Note that the red circle point in each boxplot which represents
the true value f (θ ′xj) allows us to easily judge the quality of the estimator. One can observe
that the dispersion of the f̂n(θ̂ ′

nx)’s are small and the mean is very close to the true value f (θ ′x).
One can also notice that the larger is the sample size n, the greater is the quality measure. As it
was expected, the quality of the estimation decreases for large values of f (θ ′x) since the number
of observations around x decreases, see the scatterplots of Figure 1 to be convinced. Finally,
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Figure 4. Almost sure convergence of f̂n(θ̂ ′
nx) to f (θ ′x) for 10 different values of x, when p = 10 and � = VV ′ + 0.1Ip.
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Statistics 11

one can also observe that the form of covariance matrix � does not impact the quality of the
estimates.

4.4. Asymptotic normality

In order to illustrate the asymptotic normality of our recursive Nadaraya–Watson estimator, we
generate N = 1000 realizations of f̂n(θ̂ ′

nx) based on samples from model (M) for various values
of n = 500, 1000, 2000 and p = 5, 10, 20.

In Figure 5, we plot histograms of the standardized values of the f̂n(θ̂ ′
nx)’s for one value x1 of

x ∈ R
p randomly generated from the uniform distribution on [−1.5; 1.5]p with p = 10, various

sample sizes n = 500, 2000 and 5000, and two covariance matrices � = Ip and VV ′ + 0.1Ip. On
each histogram, we add the curve of the standard normal density. One can clearly see that the
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Figure 5. Asymptotic normality of f̂n(θ̂ ′
nx) to f (θ ′x) with x = x1 and p = 10, for various values of n = 500, 2000 and

5000 and � = Ip and VV ′ + 0.1Ip.
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12 B. Bercu et al.

Table 2. Mean over 10 different values of x of skewness and standardized kurtosis coefficients of the
distributions of the f̂n(θ̂ ′

nx)’s, standard deviations are given in parentheses.

n = 500 n = 1000 n = 2000

p = 5 Skewness 0.148 (0.102) 0.123 (0.087) 0.063 (0.056)
Kurtosis 0.139 (0.112) −0.077 (0.086) 0.078 (0.064)

p = 10 Skewness 0.159 (0.125) 0.124 (0.099) 0.070 (0.066)
Kurtosis 0.159 (0.179) 0.084 (0.93) −0.053 (0.044)

p = 20 Skewness 0.191 (0.167) 0.141 (0.104) 0.082 (0.081)
Kurtosis −0.148 (0.121) 0.095 (0.087) 0.073 (0.066)

normal density coincides pretty well with all the histograms as the sample size n increases.
This visually shows the asymptotic normality of our recursive Nadaraya–Watson estimator
f̂n of f .

Furthermore, to enforce understanding asymptotic normality, skewness and kurtosis of dis-
tribution of simulated estimator have been calculated and tabulated in Table 2 for the different
values of n and p and data generated from model (M) with � of the form VV ′ + 0.1Ip. Note that
we used a standardized version of kurtosis such that the sample values of skewness and kurtosis
should be close to zero when the simulated sample is generated from a normal distribution. These
coefficients are theoretically equal to zero when they are defined as measures of the asymmetry
and the ‘peakedness’ of the probability distribution of a real-valued random variable.

For each values of n and p, we used 10 different values of x randomly generated from the
uniform distribution on [−1.5; 1.5]p. For each value of x, we calculate the corresponding sample
skewness and standardized kurtosis. Finally, for each pair (n, p), we calculate the mean and the
standard deviation of these 10 sample skewness (resp. kurtosis) coefficients. One can observe in
Table 2 that the mean values of skewness and standardized kurtosis are close to zero, the proxim-
ity to zero seems to increases with the sample size n and to slightly decrease with the dimension
p of the covariable. From these numerical results, we highlight the asymptotic normality of our
recursive Nadaraya–Watson estimate. Note that we obtain very similar results when data were
generated from model (M) with � = Ip

5. Conclusion

In this paper, the asymptotic behaviour of the recursive Nadaraya–Watson estimator for the esti-
mation of the regression function in a single index regression model has been investigated from
theoretical and numerical points of view. First, we use a recursive version of SIR for the esti-
mation of the unknown euclidean parameter of the underlying semiparametric regression model.
Then, we consider a recursive Nadaraya–Watson procedure for the estimation of the regression
function which takes into account the previous estimation of the parameter of the underlying
model. The almost sure convergence as well as the asymptotic normality for our Nadaraya–
Watson estimate have been established under standard regularity assumptions on the kernel. The
good numerical behaviour of the proposed estimation procedure has been illustrated on simulated
data. A major advantage of this recursive estimation procedure is that the recursive approach
clearly provides very smaller computing times in comparison with the non recursive approach.

Acknowledgements

The authors thank the Editor, the Associate Editor and the two anonymous referees for their helpful remarks and their
valuable comments and suggestions which greatly improved the paper.

D
ow

nl
oa

de
d 

by
 [

In
ri

a 
R

oc
qu

en
co

ur
t]

 a
t 0

9:
23

 1
0 

Fe
br

ua
ry

 2
01

4 



Statistics 13

References

[1] Li K-C. Sliced inverse regression for dimension reduction (with discussions). J Am Stat Assoc. 1991;86:316–342.
[2] Duan N, Li K-C. Slicing regression: a link-free regression method. Ann Stat. 1991;19:505–530.
[3] Horowitz JL. Semiparametric methods in econometrics. Lecture Notes in Statistics, Vol. 131. New York: Springer-

Verlag; 1998.
[4] Devroye L, Lugosi G. Combinatorial methods in density estimation. Springer Series in Statistics. New York:

Springer-Verlag; 2001.
[5] Nadaraya EA. Nonparametric estimation of probability densities and regression curves. Mathematics and its

applications. Dordrecht: Kluwer Academic Publishers Group; 1989.
[6] Silverman BW. Density estimation for statistics and data analysis. Monographs on Statistics and Applied

Probability. London: Chapman and Hall; 1986.
[7] Tsybakov AB. Introduction à l’estimation non-paramétrique (in French). Mathématiques et Applications. Berlin:

Springer-Verlag; 2004.
[8] Nadaraya EA. On a regression estimate. Teor. Verojatnost. i Primenen. 1964;9:157–159.
[9] Watson GS. Smooth regression analysis. Sankhya Ser A. 1964;26:359–372.

[10] Noda K. Estimation of a regression function by the Parzen kernel-type density estimators. Ann Inst Stat Math.
1976;28:221–234.

[11] Schuster EF. Joint asymptotic distribution of the estimated regression function at a finite number of distinct points.
Ann Math Stat. 1972;43:84–88.

[12] Choi E, Hall P, Rousson V. Data sharpening methods for bias reduction in nonparametric regression. Ann Stat.
2000;28:1339–1355.

[13] Duflo M. Random iterative models. Berlin: Springer-Verlag; 1997.
[14] Cook RD. Principal Hessian directions revisited (with discussion). J Am Stat Assoc. 1998;93:84–100.
[15] Cook RD, Li B. Dimension reduction for conditional mean in regression. Ann Stat. 2002;30:455–474.
[16] Hall P, Li K-C. On almost linearity of low-dimensional projections from high-dimensional data. Ann Stat.

1993;21:867–889.
[17] Chen C-H, Li K-C. Can SIR be as popular as multiple linear regression? Statist Sin. 1998;8:289–316.
[18] Cook RD, Ni L. Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J Am

Stat Assoc. 2005;100:410–418.
[19] Prendergast LA. Influence functions for sliced inverse regression. Scand J Stat. 2005;32:385–404.
[20] Szretter ME, Yohai VJ. The sliced inverse regression algorithm as a maximum likelihood procedure. J Stat Plan

Inference. 2009;139:3570–3578.
[21] Zhu L-P, Yu Z. On spline approximation of sliced inverse regression. Sci China Ser A: Math. 2007;50:1289–1302.
[22] Wu H-M. Kernel sliced inverse regression with applications to classification. J Comput Graph Stat.

2008;17:590–610.
[23] Azaïs R, Gégout-Petit A, Saracco J. Optimal quantization applied to sliced inverse regression. J Stat Plan Inference.

2012;142:481–492.
[24] Li L, Nachtsheim CJ. Sparse sliced inverse regression. Technometrics. 2006;48:503–510.
[25] Scrucca L. Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression.

Comput Stat Data Anal. 2007;52:438–451.
[26] Li L, Yin X. Sliced inverse regression with regularizations. Biometrics. 2008;64:124–131.
[27] Zhu LX, Ohtaki M, Li Y. On hybrid methods of inverse regression-based algorithms. Comput Stat.

2007;51:2621–2635.
[28] Nguyen TMN, Saracco J. Recursive estimation for sliced inverse regression (in French). Journal de la Société

Française de Statistique. 2010;151:19–46.
[29] Bercu B, Nguyen TMN, Saracco J. A new approach on recursive and non-recursive SIR methods. J Korean Stat

Soc. 2012;41:17–36.

Appendix 1. Analytical expression of the EDR direction θ̃

Let us recall that θ̃ is the eigenvector of �−1� associated with the non-null eigenvalue λ when we consider H = 2 slices.
We assume in the following that 0 < p1 < 1, so p2 = 1 − p1 > 0. We clearly have

p1z1 + p2z2 = p1m1 + p2m2 − (p1 + p2)μ = p1m1 + p2m2 − μ = μ − μ = 0. (A1)

Moreover, we already saw that

� = p1z1z′
1 + p2z2z′

2. (A2)

D
ow

nl
oa

de
d 

by
 [

In
ri

a 
R

oc
qu

en
co

ur
t]

 a
t 0

9:
23

 1
0 

Fe
br

ua
ry

 2
01

4 



14 B. Bercu et al.

Clearly, the rank of the matrix � is one. We will show that θ̃ = �−1(z1 − z2) is the major eigenvector of �−1�. From
Equation (A2), we get

�−1�θ̃ = �−1��−1(z1 − z2)

= q1p1�
−1z1 − q12p1�

−1z1 + q12p2�
−1z2 − q2p2�

−1z2,

where q1 = z′
1�

−1z1, q2 = z′
2�

−1z2 and q12 = z′
1�

−1z2 = z′
2�

−1z1. Moreover, from Equation (A1), we also have
p1q1 = −p2q12 et p2q2 = −p1q12. Then, we easily deduce that

�−1�θ̃ = p2q12�
−1(z2 − z1) + p1q12�

−1(z2 − z1)

= −q12�
−1(z1 − z2).

Using once again Equation (A1), we find that

−q12 = p1

p2
z′

1�
−1z1.

Finally, by denoting

λ = p1

p2
z′

1�
−1z1,

we obtain that �−1�θ̃ = λθ̃ . The vector θ̃ is thus the eigenvector associated with the largest eigenvalue λ of the matrix
�−1�.

Appendix 2: Proof of Theorem 3.1

In order to prove the almost sure pointwise convergence of Theorem 3.1, we shall denote for all x ∈ R

Pn(x) =
n∑

k=p+1

Wk(x)εk , Nn(x) =
n∑

k=p+1

Wk(x),

and

Qn(x) =
n∑

k=p+1

Wk(x)(f (	k) − f (x))

where 	n = θ ′Xn. We clearly obtain from Equation (1) the main decomposition

f̂n(x) − f (x) = Pn(x) + Qn(x)

Nn(x)
. (A3)

We shall establish the asymptotic behaviour of each sequence (Pn(x)), (Qn(x)) and (Nn(x)). Let (Fn) be the filtration
given by Fn = σ(X1, . . . , Xn, Y1, . . . , Yn). First of all, we can split Nn(x) into two terms,

Nn(x) = M (N)
n (x) + R(N)

n (x), (A4)

where

M (N)
n (x) =

n∑
k=p+1

(Wk(x) − E[Wk(x)|Fk−1]) and R(N)
n (x) =

n∑
k=p+1

E[Wk(x)|Fk−1].

On the one hand, we have

E[Wn(x) | Fn−1] = 1

hn

∫
Rp

K

(
x − θ̂ ′

n−1xn

hn

)
g(xn) dxn.

We can assume without loss of generality that, for n large enough, at least one component of θ̂n is different from zero a.s.
As a matter of fact, we already saw from Lemma 2.1 that θ̂n converges a.s. to θ which is different from the null vector.
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Statistics 15

For the sake of simplicity, suppose that the first component θ̂n−1,1 �= 0 a.s. We can make the change of variables

z = x − θ̂ ′
n−1xn

hn

and z2 = xn,2, . . . , zp = xn,p. The Jacobian of this linear transformation is given by

J = − hn

θ̂n−1,1
.

Consequently, we obtain that

E[Wn(x) | Fn−1] =
∫

R

K(z)h(θ̂n−1, x − zhn) dz, (A5)

where

h(θ̂n−1, x) = 1

|θ̂n−1,1|

∫
Rp−1

g

(
1

θ̂n−1,1

(
x −

p∑
k=2

θ̂n−1,kzk

)
, z2, . . . , zp

)
dz2 . . . dzp.

One can observe that h(θ , x) is exactly the probability density function associated with the identically distributed
sequence (θ ′Xn). Therefore, as the probability density function g is continuous, twice differentiable with bounded
derivatives, we deduce from Equation (A5) together with Taylor’s formula that

E[Wn(x) | Fn−1] =
∫

R

K(z)

(
h(θ̂n−1, x) − zhnh′(θ̂n−1, x)

+ z2h2
n

2
h′′(θ̂n−1, x − zhnξ)

)
dz,

= h(θ̂n−1, x) + h2
n

2

∫
R

z2K(z)h′′(θ̂n−1, x − zhnξ) dz,

where 0 < ξ < 1. Consequently, for n large enough,

|E[Wn(x)|Fn−1] − h(θ̂n−1, x)| ≤ Mhτ
2h2

n a.s. (A6)

where

Mh = sup
x∈R

|h′′(θ̂n−1, x)| and τ 2 = 1

2

∫
R

x2K(x) dx.

Hence, we find from Equation (A6) that

n∑
k=p+1

|E[Wk(x) | Fk−1] − h(θ̂k−1, x)| = O
⎛
⎝ n∑

k=p+1

h2
k

⎞
⎠ a.s.

It follows from the continuity of h together with the fact that θ̂n converges to θ a.s. and hn goes to zero that

lim
n→∞

1

n

n∑
k=p+1

E[Wk(x)|Fk−1] = h(θ , x) a.s. (A7)

which of course immediately implies that for all x ∈ R

lim
n→∞

R(N)
n (x)

n
= h(θ , x) a.s. (A8)

On the other hand, (M (N)
n (x)) is a square integrable martingale difference sequence with predictable quadratic variation

given by

〈M (N)(x)〉n =
n∑

k=p+1

E[(M (N)
k (x) − M (N)

k−1(x))
2|Fk−1],

=
n∑

k=p+1

(E[W 2
k (x)|Fk−1] − E

2[Wk(x)|Fk−1]).
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16 B. Bercu et al.

Via the same change of variables as in Equation (A5), we obtain that

E[W 2
n (x)|Fn−1] = 1

hn

∫
R

K2(z)h(θ̂n−1, x − zhn) dz,

= 1

hn

∫
R

K2(z)

(
h(θ̂n−1, x) − zhnh′(θ̂n−1, x) + z2h2

n

2
h′′(θ̂n−1, x − zhnξ)

)
dz,

where 0 < ξ < 1. Consequently, for n large enough,∣∣∣∣E[W 2
n (x)|Fn−1] − ν2

hn
h(θ̂n−1, x)

∣∣∣∣ ≤ Mhμ
2hn a.s. (A9)

where

ν2 =
∫

R

K2(x) dx and μ2 = 1

2

∫
R

x2K2(x) dx.

Hence, Equation (A9) ensures that

n∑
k=p+1

∣∣∣∣E[W 2
k (x) | Fk−1] − ν2

hk
h(θ̂k−1, x)

∣∣∣∣ = O
⎛
⎝ n∑

k=p+1

hk

⎞
⎠ a.s.

However, it is not hard to see that

lim
n→∞

1

n1+α

n∑
k=p+1

1

hk
= 1

1 + α
.

Therefore, it follows from Equation (A9) together with the almost sure convergence of h(θ̂n, x) to h(θ , x) and Toeplitz’s
lemma that

lim
n→∞

1

n1+α

n∑
k=p+1

E[W 2
k (x) | Fk−1] = ν2

1 + α
h(θ , x) a.s. (A10)

Furthermore, we also have from Equation (A6) that

lim
n→∞

1

n

n∑
k=p+1

E
2[Wk(x)|Fk−1] = h2(θ , x) a.s. (A11)

Consequently, we deduce from (A10) and (A11) that for all x ∈ R,

lim
n→∞

〈M (N)(x)〉n

n1+α
= ν2

1 + α
h(θ , x) a.s. (A12)

We are now in position to make use of the strong law of large numbers for martingales given e.g. by Theorem 1.3.15
of Duflo.[13] As the probability density function g is positive on its support, we have for all x ∈ R, h(θ , x) > 0, which
implies that 〈M (N)(x)〉n goes to infinity a.s. Hence, for any γ > 0, (M (N)

n (x))2 = o(n1+α(log n)1+γ ) a.s. which leads to

M (N)
n (x) = o(n) a.s. (A13)

Then, we obtain from Equations (A4), (A8) and (A13) that for all x ∈ R

lim
n→∞

Nn(x)

n
= h(θ , x) a.s. (A14)

We shall now investigate the asymptotic behaviour of the sequence (Pn(x)). Since (Xn) and (εn) are independent, (Pn(x))
is a square integrable martingale difference sequence with predictable quadratic variation given by

〈P(x)〉n =
n∑

k=p+1

E[(Pk(x) − Pk−1(x))
2|Fk−1] = σ 2

n∑
k=p+1

E[W 2
k (x)|Fk−1].

Then, it follows from convergence (A10) that

lim
n→∞

〈P(x)〉n

n1+α
= σ 2ν2

1 + α
h(θ , x) a.s. (A15)
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Statistics 17

Consequently, we obtain from the strong law of large numbers for martingales that for any γ > 0 and that for all x ∈ R,

Pn(x) = o(

√
n1+α(log n)1+γ ) = o(n) a.s. (A16)

It remains to study the asymptotic behaviour of the sequence (Qn(x)). We can split Qn(x) into two terms,

Qn(x) = �n(x) + 
n(x), (A17)

where 	̂n = θ̂ ′
n−1Xn,

�n(x) =
n∑

k=p+1

Wk(x)(f (	k) − f (	̂k)) and 
n(x) =
n∑

k=p+1

Wk(x)(f (	̂k) − f (x)).

The right-hand side of Equation (A17) is easy to handle. As a matter of fact, the kernel K is compactly supported which
means that one can find a positive constant A such that K vanishes outside the interval [−A, A]. Thus, for all n ≥ 1 and
all x ∈ R,

Wn(x) = 1

hn
K

(
x − θ̂ ′

n−1Xn

hn

)
I{|θ̂ ′

n−1Xn−x|≤Ahn}.

In addition, the function f is Lipschitz, so it exists a positive constant Cf such that for all n ≥ 1

|f (	̂n) − f (x)| ≤ Cf |	̂n − x| ≤ Cf |θ̂ ′
n−1Xn − x|. (A18)

Consequently, we obtain from Equation (A18) that for all x ∈ R

|
n(x)| ≤ Cf

n∑
k=p+1

Wk(x)|θ̂ ′
k−1Xk − x|,

≤ ACf

n∑
k=p+1

hkWk(x). (A19)

Moreover, via the same lines as in the proof of Equation (A7), we find that

lim
n→∞

1

n1−α

n∑
k=p+1

hkE[Wk(x)|Fk−1] = 1

1 − α
h(θ , x) a.s. (A20)

Furthermore, denote

M (
)
n (x) =

n∑
k=p+1

hk(Wk(x) − E[Wk(x)|Fk−1]).

One can observe that (M (
)
n (x)) is a square integrable martingale difference sequence with bounded increments and

predictable quadratic variation given by

〈M (
)(x)〉n =
n∑

k=p+1

E[(M (
)
k (x) − M (
)

k−1(x))
2|Fk−1],

=
n∑

k=p+1

h2
k(E[W 2

k (x)|Fk−1] − E
2[Wk(x)|Fk−1]).

Hence, it follows from Equations (A6) and (A9) together with the almost sure convergence of h(θ̂n, x) to h(θ , x) and
Toeplitz’s lemma that

lim
n→∞

〈M (
)(x)〉n

n1−α
= ν2

1 − α
h(θ , x) a.s. (A21)

Consequently, we obtain from the strong law of large numbers for martingales that

(M (
)
n (x))2 = O(n1−α log n) a.s. (A22)
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18 B. Bercu et al.

Then, we infer from the conjunction of Equations (A19), (A20) and (A22) that for all x ∈ R

|
n(x)| = O(n1−α) a.s. (A23)

The left-hand side of Equation (A17) is much more difficult to handle. We can use once again the assumption that the
function f is Lipschitz to deduce that it exists a positive constant Cf such that for all n ≥ 1

|f (	̂n) − f (	n)| ≤ Cf |πn|, (A24)

where πn = (θ̂n−1 − θ)′Xn. Hence, it immediately follows from Equation (A24) that for all x ∈ R

|�n(x)| ≤ Cf

n∑
k=p+1

Wk(x)|πk |. (A25)

Denote

An = {|θ̂ ′
n−1Xn − x| ≤ Ahn} and Bn = {|θ ′Xn − x| ≤ Ahn + bn}

where (bn) is a sequence of positive real numbers which will be explicitly given later. On the one hand, we immediately
have from the triangle inequality that on the set An ∩ Bn,

|πn| ≤ 2Ahn + bn.

On the other hand, we also have on the set An ∩ B̄n,

Ahn + bn < |θ ′Xn − x| ≤ |πn| + |θ̂ ′
n−1Xn − x| ≤ |πn| + Ahn,

which implies that |πn| > bn. Consequently, we obtain from Equation (A25) that

|�n(x)| ≤ 2ACf

n∑
k=p+1

hkWk(x) + Cf

n∑
k=p+1

bkWk(x) + Cf

n∑
k=p+1

Wk(x)|πk |I{|πk |>bk }. (A26)

We already saw from Equation (A23) that

n∑
k=p+1

hkWk(x) = O(n1−α) a.s. (A27)

Moreover, it is assumed that the sequence (Xn) has a finite moment of order a > 2 which ensures that

sup
1≤k≤n

‖Xk‖ = o(n1/a) a.s.

Consequently, we find from Lemma 2.1 that

|πn| = o(bn) a.s. (A28)

where we can choose

bn = n1/a

√
log(log n)

n
.

Therefore, we clearly have

n∑
k=p+1

Wk(x)|πk |I{|πk |>bk } < +∞ a.s. (A29)

Furthermore, it is not hard to see that

n∑
k=p+1

bk = O(n1/a
√

n log(log n)).

Hence, via the same lines as in the proof of Equation (A23), we obtain that

n∑
k=p+1

bkWk(x) = O(n1/a
√

n log(log n)) a.s. (A30)
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Then, we deduce from the conjunction of Equations (A26), (A27), (A29), and (A30) that

|�n(x)| = O(n1−α) + O(n1/a
√

n log(log n)) a.s. (A31)

Consequently, we infer from Equations (A23) and (A31) that for all x ∈ R

Qn(x) = O(n1−α) + O(n1/a
√

n log(log n)) a.s. a.s. (A32)

Finally, we can conclude from Equation (A3) together with Equations (A14), (A16) and (A32) that

lim
n→∞ f̂n(x) = f (x) a.s.

with the almost sure rates of convergence given by Equations (12) and (13), which completes the proof of Theorem 3.1.

Appendix 3. Proof of Theorem 3.2

We already saw that (Pn(x)) is a square integrable martingale difference sequence with predictable quadratic variation
satisfying

lim
n→∞

〈P(x)〉n

n1+α
= σ 2ν2

1 + α
h(θ , x) a.s.

In order to establish the asymptotic normality of Theorem 3.2, it is necessary to prove that the sequence (Pn(x)) satisfies
the Lindeberg condition, that is for all ε > 0,

Pn(x) = 1

n1+α

n∑
k=p+1

E[|
Pk(x)|2I{|
Pk (x)|≥ε
√

n1+α }|Fk−1]
P−→ 0, (A33)

where 
Pn(x) = Pn(x) − Pn−1(x). We have assumed that the sequence (εn) has a finite conditional moment of order
b > 2 which means that

sup
n≥0

E[|εn|b|Fn−1] < +∞ a.s.

Consequently, for all ε > 0, we have

Pn(x) ≤ 1

εb−2nc

n∑
k=p+1

E[|
Pk(x)|b|Fk−1],

≤ 1

εb−2nc

n∑
k=p+1

E[W b
k (x)|Fk−1]E[|εk |b|Fk−1],

≤ 1

εb−2nc
sup

1≤k≤n
E[|εk |b|Fk−1]

n∑
k=p+1

E[W b
k (x)|Fk−1] (A34)

where c = b(1 + α)/2. In addition, via the same lines as in the proof of Equation (A10), we obtain that

lim
n→∞

1

n1+α(b−1)

n∑
k=p+1

E[W b
k (x) | Fk−1] = ξb

1 + α(b − 1)
h(θ , x) a.s. (A35)

where

ξb =
∫

R

Kb(x) dx.

Therefore, we deduce from Equation (A33) together with Equations (A34) and (A35) that, for all ε > 0,

Pn(x) = O(nd ) a.s.

where d = (2 − b)(1 − α)/2. We recall that b > 2 which means that d < 0. It ensures that the Lindeberg condition is
satisfied. Hence, it follows from the central limit theorem for martingales given e.g. by Corollary 2.1.10 of Duflo [13]
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20 B. Bercu et al.

that for all x ∈ R,

Pn(x)√
n1+α

L−→ N
(

0,
σ 2ν2

1 + α
h(θ , x)

)
. (A36)

Furthermore, as soon as a ≥ 6 and 1
3 < α < 1, we clearly obtain from Equation (A32) that

lim
n→∞

Qn(x)√
n1+α

= 0 a.s. (A37)

Finally, we find from Equation (A3) together with Equations (A14), (A36), (A37) and Slutsky’s lemma that, for all x ∈ R,

√
nhn(f̂n(x) − f (x))

L−→ N
(

0,
σ 2ν2

(1 + α)h(θ , x)

)
,

which achieves the proof of Theorem 3.2.
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