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a Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours de la libération, 33405 Talence Cedex,
France
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Abstract

In this paper, we study almost sure central limit theorems for sequences of functionals of general
Gaussian fields. We apply our result to non-linear functions of stationary Gaussian sequences. We obtain
almost sure central limit theorems for these non-linear functions when they converge in law to a normal
distribution.
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1. Introduction

Let {Xn}n>1 be a sequence of real-valued independent identically distributed random variables
with E[Xn] = 0 and E[X2

n] = 1, and define

Sn =
1
√

n

n∑
k=1

Xk .
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The celebrated almost sure central limit theorem (ASCLT) states that the sequence of random
empirical measures given by

1
log n

n∑
k=1

1
k
δSk

converges almost surely to the N (0, 1) distribution as n→∞. In other words, if N is a N (0, 1)
random variable, then, almost surely, for all x ∈ R,

1
log n

n∑
k=1

1
k

1{Sk6x} −→ P(N 6 x), as n→∞,

or, equivalently, almost surely, for any bounded and continuous function ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Sk) −→ E[ϕ(N )], as n→∞. (1.1)

The ASCLT was stated first by Lévy [14] without proof. It was then forgotten for half
a century. It was rediscovered by Brosamler [7] and Schatte [20] and proven, in its present
form, by Lacey and Philipp [13]. We refer the reader to Berkes and Csáki [1] for a universal
ASCLT covering a large class of limit theorems for partial sums, extremes, empirical distribution
functions and local times associated with independent random variables {Xn}, as well as to the
work of Gonchigdanzan [10], where extensions of the ASCLT to weakly dependent random
variables are studied, for example in the context of strong mixing or ρ-mixing. Ibragimov and
Lifshits [12,11] have provided a criterion for (1.1) which does not require the sequence {Xn} of
random variables to be necessarily independent or the sequence {Sn} to take the specific form of
partial sums. This criterion is stated in Theorem 3.1.

Our goal in the present paper is to investigate the ASCLT for a sequence of functionals of
general Gaussian fields. Conditions ensuring the convergence in law of this sequence to the
standard N (0, 1) distribution may be found in [15,16] by Nourdin, Peccati and Reinert. Here,
we shall propose a suitable criterion for this sequence of functionals to satisfy also the ASCLT.
As an application, we shall consider some non-linear functions of strongly dependent Gaussian
random variables.

The paper is organized as follows. In Section 2, we present the basic elements of Gaussian
analysis and Malliavin calculus used in this paper. An abstract version of our ASCLT is stated and
proven in Section 3, as well as an application to partial sums of non-linear functions of a strongly
dependent Gaussian sequence. In Section 4, we apply our ASCLT to discrete-time fractional
Brownian motion. In Section 5, we consider applications to partial sums of Hermite polynomials
of strongly dependent Gaussian sequences, when the limit in distribution is Gaussian. Finally, in
Section 6, we discuss the case where the limit in distribution is non-Gaussian.

2. Elements of Malliavin calculus

We shall now present the basic elements of Gaussian analysis and Malliavin calculus that are
used in this paper. The reader is referred to the monograph by Nualart [17] for any unexplained
definition or result.

Let H be a real separable Hilbert space. For any q > 1, let H⊗q be the qth tensor product of H
and denote by H�q the associated qth symmetric tensor product. We write X = {X (h), h ∈ H}
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to indicate an isonormal Gaussian process over H, defined on some probability space (Ω ,F , P).
This means that X is a centered Gaussian family, whose covariance is given in terms of the scalar
product of H by E [X (h)X (g)] = 〈h, g〉H.

For every q > 1, let Hq be the qth Wiener chaos of X , that is, the closed linear subspace of
L2(Ω ,F , P) generated by the family of random variables {Hq(X (h)), h ∈ H, ‖h‖H = 1}, where
Hq is the qth Hermite polynomial defined as

Hq(x) = (−1)qe
x2
2

dq

dxq

(
e−

x2
2
)
. (2.2)

The first few Hermite polynomials are H1(x) = x , H2(x) = x2
− 1, H3(x) = x3

− 3x . We write
by convention H0 = R and I0(x) = x , x ∈ R. For any q > 1, the mapping Iq(h⊗q) = Hq(X (h))
can be extended to a linear isometry between the symmetric tensor product H�q equipped with
the modified norm ‖·‖H�q =

√
q! ‖·‖H⊗q and the qth Wiener chaos Hq . Then

E[Ip( f )Iq(g)] = δp,q × p!〈 f, g〉H⊗p (2.3)

where δp,q stands for the usual Kronecker symbol, for f ∈ H�p, g ∈ H�q and p, q > 1.
Moreover, if f ∈ H⊗q , we have

Iq( f ) = Iq( f̃ ), (2.4)

where f̃ ∈ H�q is the symmetrization of f .
It is well known that L2(Ω ,F , P) can be decomposed into the infinite orthogonal sum of

the spaces Hq . Therefore, any square integrable random variable G ∈ L2(Ω ,F , P) admits the
following Wiener chaotic expansion:

G = E[G] +
∞∑

q=1

Iq( fq), (2.5)

where the fq ∈ H�q , q > 1, are uniquely determined by G.
Let {ek, k > 1} be a complete orthonormal system in H. Given f ∈ H�p and g ∈ H�q , for

every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H⊗(p+q−2r)

defined by

f ⊗r g =
∞∑

i1,...,ir=1

〈 f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (2.6)

Since f ⊗r g is not necessarily symmetric, we denote its symmetrization by f ⊗̃r g ∈

H�(p+q−2r). Observe that f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for
p = q , f ⊗q g = 〈 f, g〉H⊗q , namely the scalar product of f and g. In the particular case
H = L2(A,A, µ), where (A,A) is a measurable space and µ is a σ -finite and non-atomic
measure, one has that H�q

= L2
s (A

q ,A⊗q , µ⊗q) is the space of symmetric and square integrable
functions on Aq . In this case, (2.6) can be rewritten as

( f ⊗r g)(t1, . . . , tp+q−2r ) =

∫
Ar

f (t1, . . . , tp−r , s1, . . . , sr )

× g(tp−r+1, . . . , tp+q−2r , s1, . . . , sr )dµ(s1) . . . dµ(sr ),
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that is, we identify r variables in f and g and integrate them out. We shall make use of the
following lemma whose proof is a straightforward application of the definition of contractions
and the Fubini theorem.

Lemma 2.1. Let f, g ∈ H�2. Then ‖ f ⊗1 g‖2
H⊗2 = 〈 f ⊗1 f, g⊗1 g〉H⊗2 .

Let us now introduce some basic elements of the Malliavin calculus with respect to the
isonormal Gaussian process X . Let S be the set of all cylindrical random variables of the form

G = ϕ (X (h1), . . . , X (hn)) , (2.7)

where n > 1, ϕ : Rn
→ R is an infinitely differentiable function with compact support and

hi ∈ H. The Malliavin derivative of G with respect to X is the element of L2(Ω ,H) defined as

DG =
n∑

i=1

∂ϕ

∂xi
(X (h1), . . . , X (hn)) hi . (2.8)

By iteration, one can define the mth derivative Dm G, which is an element of L2(Ω ,H�m), for
every m > 2. For instance, for G as in (2.7), we have

D2G =
n∑

i, j=1

∂2ϕ

∂xi∂x j
(X (h1), . . . , X (hn))hi ⊗ h j .

For m > 1 and p > 1, Dm,p denotes the closure of S with respect to the norm ‖ · ‖m,p, defined
by the relation

‖G‖p
m,p = E

[
|G|p

]
+

m∑
i=1

E
(
‖Di G‖p

H⊗i

)
. (2.9)

In particular, DX (h) = h for every h ∈ H. The Malliavin derivative D verifies moreover
the following chain rule. If ϕ : Rn

→ R is continuously differentiable with bounded partial
derivatives and if G = (G1, . . . ,Gn) is a vector of elements of D1,2, then ϕ(G) ∈ D1,2 and

Dϕ(G) =
n∑

i=1

∂ϕ

∂xi
(G)DGi .

Let now H = L2(A,A, µ) with µ non-atomic. Then an element u ∈ H can be expressed as
u = {ut , t ∈ A} and the Malliavin derivative of a multiple integral G of the form Iq( f ) (with
f ∈ H�q ) is the element DG = {Dt G, t ∈ A} of L2(A × Ω) given by

Dt G = Dt
[
Iq( f )

]
= q Iq−1 ( f (·, t)) . (2.10)

Thus the derivative of the random variable Iq( f ) is the stochastic process q Iq−1
(

f (·, t)
)
, t ∈ A.

Moreover,

‖D
[
Iq( f )

]
‖

2
H = q2

∫
A

Iq−1 ( f (·, t))2 µ(dt).

For any G ∈ L2(Ω ,F , P) as in (2.5), we define

L−1G = −
∞∑

q=1

1
q

Iq( fq). (2.11)
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It is proven in [15] that for every centered G ∈ L2(Ω ,F , P) and every C 1 and Lipschitz function
h : R→ C,

E[Gh(G)] = E[h′(G)〈DG,−DL−1G〉H]. (2.12)

In the particular case h(x) = x , we obtain from (2.12) that

Var[G] = E[G2
] = E[〈DG,−DL−1G〉H], (2.13)

where ‘Var’ denotes the variance. Moreover, if G ∈ D2,4 is centered, then it is shown in [16] that

Var[〈DG,−DL−1G〉] 6
5
2

E[‖DG‖4H]
1
2 E[‖D2G⊗1 D2G‖2

H⊗2 ]
1
2 . (2.14)

Finally, we shall also use the following bound, established in a slightly different way in
[16, Corollary 4.2], for the difference between the characteristic functions of a centered random
variable in D2,4 and of a standard Gaussian random variable.

Lemma 2.2. Let G ∈ D2,4 be centered. Then, for any t ∈ R, we have∣∣∣E[eitG
] − e−t2/2

∣∣∣ 6 |t | ∣∣∣1− E[G2
]

∣∣∣
+
|t |

2

√
10 E[‖D2G⊗1 D2G‖2

H⊗2 ]
1
4 E[‖DG‖4H]

1
4 . (2.15)

Proof. For all t ∈ R, let ϕ(t) = et2/2 E[eitG
]. It follows from (2.12) that

ϕ′(t) = tet2/2 E[eitG
] + iet2/2 E[GeitG

] = tet2/2 E[eitG(1− 〈DG,−DL−1G〉H)].

Hence, we obtain that

|ϕ(t)− ϕ(0)| 6 sup
u∈[0, t]

|ϕ′(u)| 6 |t |et2/2 E
[
|1− 〈DG,−DL−1G〉H|

]
,

which leads to∣∣∣E[eitG
] − e−t2/2

∣∣∣ 6 |t | E[|1− 〈DG,−DL−1G〉H|
]
.

Consequently, we deduce from (2.13) together with the Cauchy–Schwarz inequality that∣∣∣E[eitG
] − e−t2/2

∣∣∣ 6 |t | ∣∣∣1− E[G2
]

∣∣∣+ |t | E[|E[G2
] − 〈DG,−DL−1G〉H|

]
6 |t |

∣∣∣1− E[G2
]

∣∣∣+ |t |√Var
(
〈DG,−DL−1G〉H

)
.

We conclude the proof of Lemma 2.2 by using (2.14). �

3. A criterion for ASCLT on the Wiener space

The following result, due to Ibragimov and Lifshits [12], gives a sufficient condition for
extending convergence in law to ASCLT. It will play a crucial role in all of the sequel.

Theorem 3.1. Let {Gn} be a sequence of random variables converging in distribution towards a
random variable G∞, and set

∆n(t) =
1

log n

n∑
k=1

1
k

(
eitGk − E(eitG∞)

)
. (3.16)
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If, for all r > 0,

sup
|t |6r

∑
n

E |∆n(t)|2

n log n
<∞, (3.17)

then, almost surely, for all continuous and bounded functions ϕ : R→ R, we have

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(G∞)], as n→∞.

The following theorem is the main abstract result of this section. It provides a suitable criterion
for an ASCLT for normalized sequences in D2,4.

Theorem 3.2. Retain the notation of Section 2. Let {Gn} be a sequence in D2,4 satisfying, for all
n > 1, E[Gn] = 0 and E[G2

n] = 1. Assume that

(A0) sup
n>1

E
[
‖DGn‖

4
H] <∞,

and

E[‖D2Gn ⊗1 D2Gn‖
2
H⊗2 ] → 0, as n→∞.

Then, Gn
law
−→ N ∼ N (0, 1) as n → ∞. Moreover, assume that the two following conditions

also hold:

(A1)
∑
n>2

1

n log2 n

n∑
k=1

1
k

E[‖D2Gk ⊗1 D2Gk‖
2
H⊗2 ]

1
4 <∞,

(A2)
∑
n>2

1

n log3 n

n∑
k,l=1

|E(Gk Gl)|

kl
<∞.

Then, {Gn} satisfies an ASCLT. In other words, almost surely, for all continuous and bounded
functions ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(N )], as n→∞.

Remark 3.3. If there exists α > 0 such that E[‖D2Gk ⊗1 D2Gk‖
2
H⊗2 ] = O(k−α), as k → ∞,

then (A1) is clearly satisfied. On the other hand, if there exists C, α > 0 such that |E[Gk Gl ]| 6
C
( k

l

)α
for all k 6 l, then, for some positive constants a, b independent of n, we have∑

n>2

1

n log3 n

n∑
l=1

1
l

l∑
k=1

|E[Gk Gl ]|

k
6 C

∑
n>2

1

n log3 n

n∑
l=1

1

l1+α

l∑
k=1

kα−1

6 a
∑
n>2

1

n log3 n

n∑
l=1

1
l
6 b

∑
n>2

1

n log2 n
<∞,

which means that (A2) is also satisfied.

Proof of Theorem 3.2. The fact that Gn
law
−→ N ∼ N (0, 1) follows from [16, Corollary 4.2]. In

order to prove that the ASCLT holds, we shall verify the sufficient condition (3.17), that is, the
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Ibragimov–Lifshits criterion. For simplicity, let g(t) = E(eit N ) = e−t2/2. Then, we have

E |∆n(t)|
2
=

1

log2 n

n∑
k,l=1

1
kl

E
[(

eitGk − g(t)
)(

e−itGl − g(t)
)]

=
1

log2 n

n∑
k,l=1

1
kl

[
E
(
eit (Gk−Gl )

)
− g(t)

(
E
(
eitGk

)
+ E

(
e−itGl

))
+ g2(t)

]
=

1

log2 n

n∑
k,l=1

1
kl

[(
E
(
eit (Gk−Gl )

)
− g2(t)

)
− g(t)

(
E
(
eitGk

)
− g(t)

)
− g(t)

(
E
(
e−itGl

)
− g(t)

)]
. (3.18)

Let t ∈ R and r > 0 be such that |t | 6 r . It follows from inequality (2.15) together with
assumption (A0) that∣∣∣E(eitGk

)
− g(t)

∣∣∣ 6 rξ

2

√
10 E[‖D2Gk ⊗1 D2Gk‖

2
H⊗2 ]

1
4 (3.19)

where ξ = supn>1 E
[
‖DGn‖

4
H]

1
4 . Similarly,∣∣∣E(e−itGl

)
− g(t)

∣∣∣ 6 rξ

2

√
10 E[‖D2Gl ⊗1 D2Gl‖

2
H⊗2 ]

1
4 . (3.20)

On the other hand, we also have via (2.15) that∣∣∣E(eit (Gk−Gl )
)
− g2(t)

∣∣∣ = ∣∣∣∣E(eit
√

2
Gk−Gl√

2
)
− g(
√

2 t)

∣∣∣∣
6
√

2r

∣∣∣∣1− 1
2

E[(Gk − Gl)
2
]

∣∣∣∣+ rξ
√

5 E[‖D2(Gk − Gl)⊗1 D2(Gk − Gl)‖
2
H⊗2 ]

1
4

6
√

2r |E[Gk Gl ]| + rξ
√

5 E[‖D2(Gk − Gl)⊗1 D2(Gk − Gl)‖
2
H⊗2 ]

1
4 .

Moreover

‖D2(Gk − Gl)⊗1 D2(Gk − Gl)‖
2
H⊗2 6 2‖D2Gk ⊗1 D2Gk‖

2
H⊗2

+ 2‖D2Gl ⊗1 D2Gl‖
2
H⊗2 + 4‖D2Gk ⊗1 D2Gl‖

2
H⊗2 .

In addition, we infer from Lemma 2.1 that

E
[
‖D2Gk ⊗1 D2Gl‖

2
H⊗2

]
= E

[
〈D2Gk ⊗1 D2Gk, D2Gl ⊗1 D2Gl〉H⊗2

]
6
(

E
[
‖D2Gk ⊗1 D2Gk‖

2
H⊗2

]) 1
2
(

E
[
‖D2Gl ⊗1 D2Gl‖

2
H⊗2

]) 1
2

6
1
2

E
[
‖D2Gk ⊗1 D2Gk‖

2
H⊗2

]
+

1
2

E
[
‖D2Gl ⊗1 D2Gl‖

2
H⊗2

]
.

Consequently, we deduce from the elementary inequality (a + b)
1
4 6 a

1
4 + b

1
4 that∣∣∣E(eit (Gk−Gl )

)
− g2(t)

∣∣∣ 6 √2r |E[Gk Gl ]| + rξ
√

10
(

E
[
‖D2Gk ⊗1 D2Gk‖

2
H⊗2

] 1
4

+ E
[
‖D2Gl ⊗1 D2Gl‖

2
H⊗2

] 1
4
)
. (3.21)
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Finally, (3.17) follows from the conjunction of (A1) and (A2) together with (3.18)–(3.21), which
completes the proof of Theorem 3.2. �

We now provide an explicit application of Theorem 3.2.

Theorem 3.4. Let X = {Xn}n∈Z denote a centered stationary Gaussian sequence with unit
variance, such that

∑
r∈Z |ρ(r)| <∞, where ρ(r) = E[X0 Xr ]. Let f : R→ R be a symmetric

real function of class C 2, and let N ∼ N (0, 1). Assume moreover that f is not constant and that
E[ f ′′(N )4] <∞. For any n > 1, let

Gn =
1

σn
√

n

n∑
k=1

(
f (Xk)− E[ f (Xk)]

)
where σn is the positive normalizing constant which ensures that E[G2

n] = 1. Then, as n →∞,

Gn
law
−→ N and {Gn} satisfies an ASCLT. In other words, almost surely, for any continuous and

bounded function ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(N )], as n→∞.

Remark 3.5. We can replace the assumption ‘ f is symmetric and non-constant’ with
∞∑

q=1

1
q!

(
E[ f (N )Hq(N )]

)2∑
r∈Z
|ρ(r)|q <∞ and

∞∑
q=1

1
q!

(
E[ f (N )Hq(N )]

)2∑
r∈Z

ρ(r)q > 0.

Indeed, it suffices to replace the monotone convergence argument used to prove (3.22) by a
bounded convergence argument. However, this new assumption seems rather difficult to check in
general, except of course when the sum with respect to q is finite, that is, when f is a polynomial.

Proof of Theorem 3.4. First, note that a consequence of [16, inequality (3.19)] is that we
automatically have E[ f ′(N )4] < ∞ and E[ f (N )4] < ∞. Let us now expand f in terms of
Hermite polynomials. Since f is symmetric, we can write

f = E[ f (N )] +
∞∑

q=1

c2q H2q ,

where the real numbers c2q are given by (2q)!c2q = E[ f (N )H2q(N )]. Consequently,

σ 2
n =

1
n

n∑
k,l=1

Cov[ f (Xk), f (Xl)] =

∞∑
q=1

c2
2q(2q)!

1
n

n∑
k,l=1

ρ(k − l)2q

=

∞∑
q=1

c2
2q(2q)!

∑
r∈Z

ρ(r)2q
(

1−
|r |

n

)
1{|r |6n}.

Hence, it follows from the monotone convergence theorem that

σ 2
n −→ σ 2

∞ =

∞∑
q=1

c2
2q(2q)!

∑
r∈Z

ρ(r)2q , as n→∞. (3.22)
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Since f is not constant, one can find some q > 1 such that c2q 6= 0. Moreover, we also have∑
r∈Z ρ(r)

2q > ρ(0)2q
= 1. Hence, σ∞ > 0, which implies in particular that the infimum of the

sequence {σn}n>1 is positive.
The Gaussian space generated by X = {Xk}k∈Z can be identified with an isonormal Gaussian

process of the type X = {X (h) : h ∈ H}, for H defined as follows: (i) denote by E the set of all
sequences indexed by Z with finite support; (ii) define H as the Hilbert space obtained by closing
E with respect to the scalar product

〈u, v〉H =
∑

k,l∈Z
ukvlρ(k − l). (3.23)

In this setting, we have X (εk) = Xk where εk = {δkl}l∈Z, δkl standing for the Kronecker symbol.
In view of (2.8), we have

DGn =
1

σn
√

n

n∑
k=1

f ′(Xk)εk .

Hence

‖DGn‖
2
H =

1

σ 2
n n

n∑
k,l=1

f ′(Xk) f ′(Xl)〈εk, εl〉H =
1

σ 2
n n

n∑
k,l=1

f ′(Xk) f ′(Xl)ρ(k − l),

and so

‖DGn‖
4
H =

1

σ 4
n n2

n∑
i, j,k,l=1

f ′(X i ) f ′(X j ) f ′(Xk) f ′(Xl)ρ(i − j)ρ(k − l).

We deduce from Cauchy–Schwarz inequality that∣∣E[ f ′(X i ) f ′(X j ) f ′(Xk) f ′(Xl)]
∣∣ 6 (E[ f ′(N )4]) 1

4 ,

which leads to

E[‖DGn‖
4
H] 6

1

σ 4
n

(
E[ f ′(N )4]

) 1
4

(∑
r∈Z
|ρ(r)|

)2

. (3.24)

On the other hand, we also have

D2Gn =
1

σn
√

n

n∑
k=1

f ′′(Xk)εk ⊗ εk,

and therefore

D2Gn ⊗1 D2Gn =
1

σ 2
n n

n∑
k,l=1

f ′′(Xk) f ′′(Xl)ρ(k − l)εk ⊗ εl .

Hence

E
[
‖D2Gn ⊗1 D2Gn‖

2
H⊗2

]
,

=
1

σ 4
n n2

n∑
i, j,k,l=1

E
[

f ′′(X i ) f ′′(X j ) f ′′(Xk) f ′′(Xl)
]
ρ(k − l)ρ(i − j)ρ(k − i)ρ(l − j)
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6
(E
[

f ′′(N )4
]
)

1
4

σ 4
n n

∑
u,v,w∈Z

|ρ(u)‖ρ(v)‖ρ(w)||ρ(−u + v + w)|

6
(E
[

f ′′(N )4
]
)

1
4 ‖ρ‖∞

σ 4
n n

(∑
r∈Z
|ρ(r)|

)3

<∞. (3.25)

By virtue of Theorem 3.2 together with the fact that infn>1 σn > 0, the inequalities (3.24) and

(3.25) imply that Gn
law
−→ N . Now, in order to show that the ASCLT holds, we shall also check

that conditions (A1) and (A2) in Theorem 3.2 are fulfilled. First, still because infn>1 σn > 0,
(A1) holds since we have E

[
‖D2Gn ⊗1 D2Gn‖

2
H⊗2

]
= O(n−1) by (3.25); see also Remark 3.3.

Therefore, it only remains to prove (A2). Gebelein’s inequality (see e.g. identity (1.7) in [3])
states that∣∣Cov[ f (X i ), f (X j )]

∣∣ 6 E[X i X j ]
√

Var[ f (X i )]

√
Var[ f (X j )] = ρ(i − j)Var[ f (N )].

Consequently,

|E[Gk Gl ]| =
1

σkσl
√

kl

∣∣∣∣∣ k∑
i=1

l∑
j=1

Cov[ f (X i ), f (X j )]

∣∣∣∣∣ 6 Var[ f (N )]

σkσl
√

kl

k∑
i=1

l∑
j=1

|ρ(i − j)|

=
Var[ f (N )]

σkσl
√

kl

k∑
i=1

i−1∑
r=i−l

|ρ(r)| 6
Var[ f (N )]
σkσl

√
k

l

∑
r∈Z
|ρ(r)|.

Finally, via the same arguments as in Remark 3.3, (A2) is satisfied, which completes the proof
of Theorem 3.4. �

The following result specializes Theorem 3.2, by providing a criterion for an ASCLT for
multiple stochastic integrals of fixed order q > 2. It is expressed in terms of the kernels of these
integrals.

Corollary 3.6. Retain the notation of Section 2. Fix q > 2, and let {Gn} be a sequence of the
form Gn = Iq( fn), with fn ∈ H�q . Assume that E[G2

n] = q!‖ fn‖
2
H⊗q = 1 for all n, and that

‖ fn ⊗r fn‖H⊗2(q−r) → 0 as n→∞, for every r = 1, . . . , q − 1. (3.26)

Then, Gn
law
−→ N ∼ N (0, 1) as n → ∞. Moreover, if the following two conditions are also

satisfied:

(A′1)
∑
n>2

1

n log2 n

n∑
k=1

1
k
‖ fk ⊗r fk‖H⊗2(q−r) <∞ for every r = 1, . . . , q − 1,

(A′2)
∑
n>2

1

n log3 n

n∑
k,l=1

∣∣〈 fk, fl〉H⊗q
∣∣

kl
<∞,

then {Gn} satisfies an ASCLT. In other words, almost surely, for all continuous and bounded
functions ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(N )], as n→∞.



B. Bercu et al. / Stochastic Processes and their Applications 120 (2010) 1607–1628 1617

Proof of Corollary 3.6. The fact that Gn
law
−→ N ∼ N (0, 1) follows directly from (3.26), which

is the Nualart–Peccati [18] criterion of normality. In order to prove that the ASCLT holds, we
shall apply once again Theorem 3.2. This is possible because a multiple integral is always an
element of D2,4. We have, by (2.13),

1 = E[G2
k] = E[〈DGk,−DL−1Gk〉H] =

1
q

E[‖DGk‖
2
H],

where the last inequality follows from −L−1Gk =
1
q Gk , using the definition (2.11) of L−1.

In addition, as the random variables ‖DGk‖
2
H live inside the finite sum of the first 2q Wiener

chaoses (where all the L p norms are equivalent), we deduce that condition (A0) of Theorem 3.2
is satisfied. On the other hand, it is proven in [16, page 604] that

E
[
‖D2Gk ⊗1 D2Gk‖

2
H⊗2

]
6 q4(q − 1)4

q−1∑
r=1

(r − 1)!2
(

q − 2
r − 1

)4

(2q − 2− 2r)!

× ‖ fk ⊗r fk‖
2
H⊗2(q−r) .

Consequently, condition (A′1) implies condition (A1) of Theorem 3.2. Furthermore, by (2.3),
E[Gk Gl ] = E

[
Iq( fk)Iq( fl)

]
= q!〈 fk, fl〉H⊗q . Thus, condition (A′2) is equivalent to condition

(A2) of Theorem 3.2, and the proof of the corollary is done. �

In Corollary 3.6, we supposed q > 2, which implies that Gn = Iq( fn) is a multiple integral
of order at least 2 and hence is not Gaussian. We now consider the Gaussian case q = 1.

Corollary 3.7. Let {Gn} be a centered Gaussian sequence with unit variance. If the condition
(A2) in Theorem 3.2 is satisfied, then {Gn} satisfies an ASCLT. In other words, almost surely, for
all continuous and bounded functions ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(N )], as n→∞.

Proof of Corollary 3.7. Let t ∈ R and r > 0 be such that |t | 6 r , and let ∆n(t) be defined as in
(3.16). We have

E |∆n(t)|
2
=

1

log2 n

n∑
k,l=1

1
kl

E
[(

eitGk − e−t2/2)(e−itGl − e−t2/2)]
=

1

log2 n

n∑
k,l=1

1
kl

[
E
(
eit (Gk−Gl )

)
− e−t2

]
=

1

log2 n

n∑
k,l=1

e−t2

kl

(
eE(Gk Gl )t2

− 1
)

6
r2er2

log2 n

n∑
k,l=1

|E(Gk Gl)|

kl
,

since |ex
− 1| 6 e|x ||x | and |E(Gk Gl)| 6 1. Therefore, assumption (A2) implies (3.17), and the

proof of the corollary is done. �
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4. Application to discrete-time fractional Brownian motion

Let us apply Corollary 3.7 to the particular case Gn = B H
n /nH , where B H is a fractional

Brownian motion with Hurst index H ∈ (0, 1). We recall that B H
= (B H

t )t>0 is a centered
Gaussian process with continuous paths such that

E[B H
t B H

s ] =
1
2

(
t2H
+ s2H

− |t − s|2H
)
, s, t > 0.

The process B H is self-similar with stationary increments and we refer the reader to Nualart [17]
and Samorodnitsky and Taqqu [19] for its main properties. The increments

Yk = B H
k+1 − B H

k , k > 0,

called ‘fractional Gaussian noise’, are centered stationary Gaussian random variables with
covariance

ρ(r) = E[YkYk+r ] =
1
2

(
|r + 1|2H

+ |r − 1|2H
− 2|r |2H ), r ∈ Z. (4.27)

This covariance behaves asymptotically as

ρ(r) ∼ H(2H − 1)|r |2H−2 as |r | → ∞. (4.28)

Observe that ρ(0) = 1 and:

(1) For 0 < H < 1/2, ρ(r) < 0 for r 6= 0,∑
r∈Z
|ρ(r)| <∞ and

∑
r∈Z

ρ(r) = 0.

(2) For H = 1/2, ρ(r) = 0 if r 6= 0.
(3) For 1/2 < H < 1,∑

r∈Z
|ρ(r)| = ∞.

The Hurst index measures the strength of the dependence when H > 1/2: the larger H , the
stronger the dependence.

A continuous-time version of the following result was obtained by Berkes and Horváth [2]
via a different approach.

Theorem 4.1. For all H ∈ (0, 1), we have, almost surely, for all continuous and bounded
functions ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(B H

k /k H ) −→ E[ϕ(N )], as n→∞.

Proof of Theorem 4.1. We shall make use of Corollary 3.7. The cases H < 1/2 and H > 1/2
are treated separately. From now on, the value of a constant C > 0 may change from line to line,
and we set ρ(r) = 1

2

(
|r + 1|2H

+ |r − 1|2H
− 2|r |2H

)
, r ∈ Z.

Case H < 1/2. For any b > a > 0, we have

b2H
− a2H

= 2H
∫ b−a

0

dx

(x + a)1−2H
6 2H

∫ b−a

0

dx

x1−2H
= (b − a)2H .
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Hence, for l > k > 1, we have l2H
− (l − k)2H 6 k2H , so

|E[B H
k B H

l ]| =
1
2

(
k2H
+ l2H

− (l − k)2H ) 6 k2H .

Thus ∑
n>2

1

n log3 n

n∑
l=1

1
l

l∑
k=1

|E[Gk Gl ]|

k
=

∑
n>2

1

n log3 n

n∑
l=1

1

l1+H

l∑
k=1

|E[B H
k B H

l ]|

k1+H

6
∑
n>2

1

n log3 n

n∑
l=1

1

l1+H

l∑
k=1

1

k1−H

6 C
∑
n>2

1

n log3 n

n∑
l=1

1
l
6 C

∑
n>2

1

n log2 n
<∞.

Consequently, condition (A2) in Theorem 3.2 is satisfied.

Case H > 1/2. For l > k > 1, it follows from (4.27)–(4.28) that

|E[B H
k B H

l ]| =

∣∣∣∣∣k−1∑
i=0

l−1∑
j=0

E[(B H
i+1 − B H

i )(B
H
j+1 − B H

j )]

∣∣∣∣∣ 6 k−1∑
i=0

l−1∑
j=0

|ρ(i − j)|

6 k
l−1∑

r=−l+1

|ρ(r)| 6 Ckl2H−1.

The last inequality comes from the fact that ρ(0) = 1, ρ(1) = ρ(−1) = (22H
− 1)/2 and, if

r > 2,

|ρ(−r)| = |ρ(r)| =
∣∣∣E[(B H

r+1 − B H
r )B

H
1 ]

∣∣∣ = H(2H − 1)
∫ 1

0
du
∫ r+1

r
dv(v − u)2H−2

6 H(2H − 1)
∫ 1

0
(r − u)2H−2du 6 H(2H − 1)(r − 1)2H−2.

Consequently,∑
n>2

1

n log3 n

n∑
l=1

1
l

l∑
k=1

|E[Gk Gl ]|

k
=

∑
n>2

1

n log3 n

n∑
l=1

1

l1+H

l∑
k=1

|E[B H
k B H

l ]|

k1+H

6 C
∑
n>2

1

n log3 n

n∑
l=1

1

l2−H

l∑
k=1

1
k H

6 C
∑
n>2

1

n log3 n

n∑
l=1

1
l
6 C

∑
n>2

1

n log2 n
<∞.

Finally, condition (A2) in Theorem 3.2 is satisfied, which completes the proof of Theorem 4.1.
�

5. Partial sums of Hermite polynomials: the Gaussian limit case

Let X = {Xk}k∈Z be a centered stationary Gaussian process and for all r ∈ Z, set
ρ(r) = E[X0 Xr ]. Fix an integer q > 2, and let Hq stand for the Hermite polynomial of degree
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q; see (2.2). We are interested in an ASCLT for

Vn =

n∑
k=1

Hq(Xk), n > 1, (5.29)

in cases where Vn , adequately normalized, converges to a normal distribution. Our result is as
follows.

Theorem 5.1. Assume that
∑

r∈Z |ρ(r)|
q < ∞, that

∑
r∈Z ρ(r)

q > 0 and that there exists
α > 0 such that

∑
|r |>n |ρ(r)|

q
= O(n−α), as n→∞. For any n > 1, define

Gn =
Vn

σn
√

n
,

where Vn is given by (5.29) and σn denotes the positive normalizing constant which ensures that

E[G2
n] = 1. Then Gn

law
−→ N ∼ N (0, 1) as n → ∞, and {Gn} satisfies an ASCLT. In other

words, almost surely, for all continuous and bounded functions ϕ : R→ R,

1
log n

n∑
k=1

1
k
ϕ(Gk) −→ E[ϕ(N )], as n→∞.

Proof. We shall make use of Corollary 3.6. Let C be a positive constant, depending only on q and
ρ, whose value may change from line to line. We consider the real and separable Hilbert space H
as defined in the proof of Theorem 3.4, with the scalar product (3.23). Following the same line
of reasoning as in the proof of (3.22), it is possible to show that σ 2

n → q!
∑

r∈Z ρ(r)
q > 0.

In particular, the infimum of the sequence {σn}n>1 is positive. On the other hand, we have
Gn = Iq( fn), where the kernel fn is given by

fn =
1

σn
√

n

n∑
k=1

ε
⊗q
k ,

with εk = {δkl}l∈Z, δkl standing for the Kronecker symbol. For all n > 1 and r = 1, . . . , q − 1,
we have

fn ⊗r fn =
1

σ 2
n n

n∑
k,l=1

ρ(k − l)rε⊗(q−r)
k ⊗ ε

⊗(q−r)
l .

We deduce that

‖ fn ⊗r fn‖
2
H⊗(2q−2r) =

1

σ 4
n n2

n∑
i, j,k,l=1

ρ(k − l)rρ(i − j)rρ(k − i)q−rρ(l − j)q−r .

Consequently, as in the proof of (3.25), we obtain that ‖ fn ⊗r fn‖
2
H⊗(2q−2r) 6 An where

An =
1

σ 4
n n

∑
u,v,w∈Dn

|ρ(u)|r |ρ(v)|r |ρ(w)|q−r
|ρ(−u + v + w)|q−r

with Dn = {−n, . . . , n}. Fix an integer m > 1 such that n > m. We can split An into two terms
An = Bn,m + Cn,m where

Bn,m =
1

σ 4
n n

∑
u,v,w∈Dm

|ρ(u)|r |ρ(v)|r |ρ(w)|q−r
|ρ(−u + v + w)|q−r ,
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Cn,m =
1

σ 4
n n

∑
u,v,w∈Dn
|u|∨|v|∨|w|>m

|ρ(u)|r |ρ(v)|r |ρ(w)|q−r
|ρ(−u + v + w)|q−r .

We clearly have

Bn,m 6
1

σ 4
n n
‖ρ‖

2q
∞(2m + 1)3 6

Cm3

n
.

On the other hand, Dn ∩ {|u| ∨ |v| ∨ |w| > m} ⊂ Dn,m,u ∪ Dn,m,v ∪ Dn,m,w where the set
Dn,m,u = {|u| > m, |v| 6 n, |w| 6 n} with similar definitions for Dn,m,v and Dn,m,w. Define

Cn,m,u =
1

σ 4
n n

∑
u,v,w∈Dn,m,u

|ρ(u)|r |ρ(v)|r |ρ(w)|q−r
|ρ(−u + v + w)|q−r

with similar expressions for Cn,m,v and Cn,m,w. It follows from the Hölder inequality that

Cn,m,u 6
1

σ 4
n n

 ∑
u,v,w∈Dn,m,u

|ρ(u)|q |ρ(v)|q

 r
q

×

 ∑
u,v,w∈Dn,m,u

|ρ(w)|q |ρ(−u + v + w)|q

1− r
q

. (5.30)

However,∑
u,v,w∈Dn,m,u

|ρ(u)|q |ρ(v)|q 6 (2n + 1)
∑
|u|>m

|ρ(u)|q
∑
v∈Z
|ρ(v)|q 6 Cn

∑
|u|>m

|ρ(u)|q .

Similarly,∑
u,v,w∈Dn,m,u

|ρ(w)|q |ρ(−u + v + w)|q 6 (2n + 1)
∑
v∈Z
|ρ(v)|q

∑
w∈Z
|ρ(w)|q 6 Cn.

Therefore, (5.30) and the last assumption of Theorem 5.1 imply that for m large enough

Cn,m,u 6 C

(∑
|u|>m

|ρ(u)|q
) r

q

6 Cm−
αr
q .

We obtain exactly the same bound for Cn,m,v and Cn,m,w. Combining all these estimates, we
finally find that

‖ fn ⊗r fn‖
2
H⊗(2q−2r) 6 C × inf

m6n

{
m3

n
+ m−

αr
q

}
6 Cn−

αr
3q+αr

by taking the value m = n
q

3q+αr . This ensures that condition (A′1) in Corollary 3.6 is met. Let us
now prove (A′2). We have

〈 fk, fl〉H⊗q =
1

σkσl
√

kl

∣∣∣∣∣ k∑
i=1

l∑
j=1

ρ(i − j)q
∣∣∣∣∣ 6 1

σkσl
√

kl

k∑
i=1

l∑
j=1

|ρ(i − j)|q ,

6
1
σkσl

√
k

l

∑
r∈Z
|ρ(r)|q ,

so (A′2) is also satisfied (see Remark 3.3), which completes the proof of Theorem 5.1. �
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The following result contains an explicit situation where the assumptions in Theorem 5.1 are
in order.

Proposition 5.2. Assume that ρ(r) ∼ |r |−βL(r), as |r | → ∞, for some β > 1/q and some
slowly varying function L. Then

∑
r∈Z |ρ(r)|

q < ∞ and there exists α > 0 such that∑
|r |>n |ρ(r)|

q
= O(n−α), as n→∞.

Proof. By a Riemann sum argument, it is immediate that
∑

r∈Z |ρ(r)|
q < ∞. Moreover, by

[4, Prop. 1.5.10], we have
∑
|r |>n |ρ(r)|

q
∼

2
βq−1 n1−βq Lq(n) so we can choose α = 1

2 (βq −
1) > 0 (for instance). �

6. Partial sums of Hermite polynomials of increments of fractional Brownian motion

We focus here on increments of the fractional Brownian motion B H (see Section 4 for details
about B H ). More precisely, for every q > 1, we are interested in an ASCLT for the q-Hermite
power variation of B H , defined as

Vn =

n−1∑
k=0

Hq(B
H
k+1 − B H

k ), n > 1, (6.31)

where Hq stands for the Hermite polynomial of degree q given by (2.2). Observe that
Theorem 4.1 corresponds to the particular case q = 1. That is why, from now on, we assume that
q > 2. When H 6= 1/2, the increments of B H are not independent, so the asymptotic behavior
of (6.31) is difficult to investigate because Vn is not linear. In fact, thanks to the seminal works
of Breuer and Major [6], Dobrushin and Major [8], Giraitis and Surgailis [9] and Taqqu [21], it
is known (recall that q > 2) that, as n→∞:

• If 0 < H < 1− 1
2q , then

Gn :=
Vn

σn
√

n
law
−→ N (0, 1). (6.32)

• If H = 1− 1
2q , then

Gn :=
Vn

σn
√

n log n

law
−→ N (0, 1). (6.33)

• If H > 1− 1
2q , then

Gn := nq(1−H)−1Vn
law
−→G∞ (6.34)

where G∞ has a ‘Hermite distribution’. Here, σn denotes the positive normalizing constant which
ensures that E[G2

n] = 1. The proofs of (6.32) and (6.33), together with rates of convergence, can
be found in [15] and [5], respectively. A short proof of (6.34) is given in Proposition 6.1 below.
Notice that rates of convergence can be found in [5]. Our proof of (6.34) is based on the fact that,
for fixed n, Zn defined in (6.35) below and Gn share the same law, because of the self-similarity
property of fractional Brownian motion.
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Proposition 6.1. Assume H > 1− 1
2q , and define Zn by

Zn = nq(1−H)−1
n−1∑
k=0

Hq
(
nH (B H

(k+1)/n − B H
k/n)

)
, n > 1. (6.35)

Then, as n → ∞, {Zn} converges almost surely and in L2(Ω) to a limit denoted by Z∞, which
belongs to the qth chaos of B H .

Proof. Let us first prove the convergence in L2(Ω). For n,m > 1, we have

E[Zn Zm] = q!(nm)q−1
n−1∑
k=0

m−1∑
l=0

(
E
[(

B H
(k+1)/n − B H

k/n

)(
B H
(l+1)/m − B H

l/m

)])q
.

Furthermore, since H > 1/2, we have for all s, t > 0,

E[B H
s B H

t ] = H(2H − 1)
∫ t

0
du
∫ s

0
dv|u − v|2H−2.

Hence

E[Zn Zm] = q!Hq(2H − 1)q

×
1

nm

n−1∑
k=0

m−1∑
l=0

(
nm

∫ (k+1)/n

k/n
du
∫ (l+1)/m

l/m
dv|v − u|2H−2

)q

.

Therefore, as n,m →∞, we have

E[Zn Zm] → q!Hq(2H − 1)q
∫
[0,1]2
|u − v|(2H−2)qdudv,

and the limit is finite since H > 1− 1
2q . In other words, the sequence {Zn} is Cauchy in L2(Ω),

and hence converges in L2(Ω) to some Z∞.
Let us now prove that {Zn} converges also almost surely. Observe first that, since Zn belongs

to the qth chaos of B H for all n, since {Zn} converges in L2(Ω) to Z∞ and since the qth chaos
of B H is closed in L2(Ω) by definition, we have that Z∞ also belongs to the qth chaos of B H . In
[5, Proposition 3.1], it is shown that E[|Zn − Z∞|2] 6 Cn2q−1−2q H , for some positive constant
C not depending on n. Inside a fixed chaos, all the L p-norms are equivalent. Hence, for any
p > 2, we have E[|Zn − Z∞|p] 6 Cn p(q−1/2−q H). Since H > 1− 1

2q , there exists p > 2 large
enough that (q − 1/2− q H)p < −1. Consequently∑

n>1

E[|Zn − Z∞|
p
] <∞,

leading, for all ε > 0, to∑
n>1

P[|Zn − Z∞| > ε] <∞.

Therefore, we deduce from the Borel–Cantelli lemma that {Zn} converges almost surely to
Z∞. �

We now want to see whether one can associate almost sure central limit theorems with the
convergences in law (6.32)–(6.34). We first consider the case H < 1− 1

2q .
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Theorem 6.2. Assume that q > 2 and that H < 1− 1
2q , and consider

Gn =
Vn

σn
√

n

as in (6.32). Then, {Gn} satisfies an ASCLT.

Proof. Since 2H−2 > 1/q, it suffices to combine (4.28), Proposition 5.2 and Theorem 5.1. �

Next, let us consider the critical case H = 1− 1
2q . In this case,

∑
r∈Z |ρ(r)|

q
= ∞.Consequently,

as it is impossible to apply Theorem 5.1, we propose another strategy which relies on the
following lemma established in [5].

Lemma 6.3. Set H = 1 − 1
2q . Let H be the real and separable Hilbert space defined as

follows: (i) denote by E the set of all R-valued step functions on [0,∞), (ii) define H as the
Hilbert space obtained by closing E with respect to the scalar product〈

1[0,t], 1[0,s]
〉
H
= E[B H

t B H
s ].

For any n > 2, let fn be the element of H�q defined by

fn =
1

σn
√

n log n

n−1∑
k=0

1⊗q
[k,k+1], (6.36)

where σn is the positive normalizing constant which ensures that q!‖ fn‖
2
H⊗q = 1. Then, there

exists a constant C > 0 depending only on q and H such that, for all n > 1 and r = 1, . . . , q−1,

‖ fn ⊗r fn‖H⊗(2q−2r) 6 C(log n)−1/2.

We can now state and prove the following result.

Theorem 6.4. Assume that q > 2 and H = 1− 1
2q , and consider

Gn =
Vn

σn
√

n log n

as in (6.33). Then, {Gn} satisfies an ASCLT.

Proof of Theorem 6.4. We shall make use of Corollary 3.6. Let C be a positive constant,
depending only on q and H , whose value may change from line to line. We consider the
real and separable Hilbert space H as defined in Lemma 6.3. We have Gn = Iq( fn) with fn
given by (6.36). According to Lemma 6.3, we have for all k > 1 and r = 1, . . . , q − 1 that
‖ fk ⊗r fk‖H⊗(2q−2r) 6 C(log k)−1/2. Hence∑

n>2

1

n log2 n

n∑
k=1

1
k
‖ fk ⊗r fk‖H⊗(2q−2r) 6 C

∑
n>2

1

n log2 n

n∑
k=1

1

k
√

log k

6 C
∑
n>2

1

n log3/2 n
<∞.

Consequently, assumption (A′1) is satisfied. As regards (A′2), note that

〈 fk, fl〉H⊗q =
1

σkσl
√

k log k
√

l log l

k−1∑
i=0

l−1∑
j=0

ρ( j − i)q .
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We deduce from Lemma 6.5 below that σ 2
n → σ 2

∞ > 0. Hence, for all l > k > 1

∣∣〈 fk, fl〉H⊗q
∣∣ 6 C√

k log k
√

l log l

k−1∑
i=0

l−1∑
j=0

|ρ( j − i)|q

=
C√

k log k
√

l log l

k−1∑
i=0

l−1−i∑
r=−i

|ρ(r)|q

6 C

√
k√

log k
√

l log l

l∑
r=−l

|ρ(r)|q 6 C

√
k log l

l log k
.

The last inequality follows from the fact that
∑l

r=−l |ρ(r)|
q 6 C log l since, by (4.28), as

|r | → ∞,

ρ(r) ∼

(
1−

1
q

)(
1−

1
2q

)
|r |−1/q .

Finally, assumption (A′2) is also satisfied as∑
n>2

1

n log3 n

n∑
k,l=2

∣∣〈 fk, fl〉H⊗q
∣∣

kl
6 2

∑
n>2

1

n log3 n

n∑
l=2

l∑
k=2

∣∣〈 fk, fl〉H⊗q
∣∣

kl

6 C
∑
n>2

1

n log3 n

n∑
l=2

√
log l

l3/2

l∑
k=2

1√
k log k

6 C
∑
n>2

1

n log3 n

n∑
l=2

1
l
6 C

∑
n>2

1

n log2 n
<∞. �

In the previous proof, we used the following lemma.

Lemma 6.5. Assume that q > 2 and H = 1− 1
2q . Then,

σ 2
n → 2q!

(
1−

1
q

)q (
1−

1
2q

)q

> 0, as n→∞.

Proof. We have E[(B H
k+1 − B H

k )(B
H
l+1 − B H

l )] = ρ(k − l) where ρ is given in (4.27). Hence,

E[V 2
n ] =

n−1∑
k,l=0

E
(
Hq(B

H
k+1 − B H

k )Hq(B
H
l+1 − B H

l )
)
= q!

n−1∑
k,l=0

ρ(k − l)q

= q!
n−1∑
l=0

n−1−l∑
r=−l

ρ(r)q = q!
∑
|r |<n

(
n − 1− |r |

)
ρ(r)q

= q!

(
n
∑
|r |<n

ρ(r)q −
∑
|r |<n

(
|r | + 1

)
ρ(r)q

)
.

On the other hand, as |r | → ∞,

ρ(r)q ∼

(
1−

1
q

)q (
1−

1
2q

)q 1
|r |
.



1626 B. Bercu et al. / Stochastic Processes and their Applications 120 (2010) 1607–1628

Therefore, as n→∞,∑
|r |<n

ρ(r)q ∼

(
1−

1
2q

)q (
1−

1
q

)q ∑
0<|r |<n

1
|r |
∼ 2

(
1−

1
2q

)q (
1−

1
q

)q

log n

and ∑
|r |<n

(
|r | + 1

)
ρ(r)q ∼

(
1−

1
2q

)q (
1−

1
q

)q ∑
|r |<n

1 ∼ 2n

(
1−

1
2q

)q (
1−

1
q

)q

.

Consequently, as n→∞,

σ 2
n =

E[V 2
n ]

n log n
→ 2q!

(
1−

1
q

)q (
1−

1
2q

)q

. �

Finally, we consider

Gn = nq(1−H)−1Vn (6.37)

with H > 1 − 1
2q . We face in this case some difficulties. First, since the limit of {Gn} in (6.34)

is not Gaussian, we cannot apply our general criterion Corollary 3.6 to obtain an ASCLT. To
modify the criterion adequately, we would need a version of Lemma 2.2 for random variables
with a Hermite distribution, a result which is not currently available. Thus, an ASCLT associated
with the convergence in law (6.34) falls outside the scope of this paper. We can nevertheless make
a number of observations. First, changing the nature of the random variables without changing
their law has no impact on CLTs as in (6.34), but may have a great impact on an ASCLT. To
see this, observe that for each fixed n, the ASCLT involves not only the distribution of the single
variable Gn , but also the joint distribution of the vector (G1, . . . ,Gn).

Consider, moreover, the following example. Let {Gn} be a sequence of random variables
converging in law to a limit G∞. According to a theorem of Skorohod, there is a sequence {G∗n}

such that for any fixed n, G∗n
law
= Gn and such that {G∗n} converges almost surely, as n→∞, to a

random variable G∗∞ with G∗∞
law
= G∞. In this case, we say that G∗n is a Skorohod version of Gn .

Then, for any bounded continuous function ϕ : R→ R, we have ϕ(G∗n) −→ ϕ(G∗∞) a.s. which
clearly implies the almost sure convergence

1
log n

n∑
k=1

1
k
ϕ(G∗k) −→ ϕ(G∗∞).

This limit is, in general, different from E[ϕ(G∗∞)] or equivalently E[ϕ(G∞)], that is, different
from the limit if one had an ASCLT.

Consider now the sequence {Gn} defined by (6.37).

Proposition 6.6. A Skorohod version of

Gn = nq(1−H)−1
n−1∑
k=0

Hq(B
H
k+1 − B H

k ) (6.38)

is given by

G∗n = Zn = nq(1−H)−1
n−1∑
k=0

Hq
(
nH (B H

(k+1)/n − B H
k/n)

)
. (6.39)
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Proof. Just observe that G∗n
law
= Gn and G∗n converges almost surely by Proposition 6.1. �

Hence, in the case of Hermite distributions, by suitably modifying the argument of the Hermite
polynomial Hq in a way which does not change the limit in law, namely by considering Zn in
(6.39) instead of Gn in (6.38), we obtain the almost sure convergence

1
log n

n∑
k=1

1
k
ϕ(Zk) −→ ϕ(Z∞).

The limit ϕ(Z∞) is, in general, different from the limit expected under an ASCLT, namely
E[ϕ(Z∞)], because Z∞ is a non-constant random variable with a Hermite distribution [8,21].
Thus, knowing the law of Gn in (6.38), for a fixed n, does not allow us to determine whether an
ASCLT holds or not.
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