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Adaptive Control of Parametric Nonlinear Autoregressive
Models Via a New Martingale Approach

Bernard Bercu and Bruno Portier

Abstract—The purpose of this note is to investigate the stability and the
optimality of the adaptive tracking for a wide class of parametric nonlinear
autoregressive models, via a new martingale approach. Several asymptotic
results for the standard least squares estimator of the unknown model pa-
rameter, such as a central limit theorem, a law of iterated logarithm, and
strong laws of large numbers are also provided.

Index Terms—Adaptive control, central limit theorem (CLT), law of it-
erated logarithm (LIL), least squares (LS), martingales, nonlinear autore-
gressive models, strong laws.

I. INTRODUCTION

Consider the nonlinear autoregressive model of orderd � 1 given,
for all n � 0, by

Xn+1 = �f(Xn; Xn�1; . . . ; Xn�d+1) + Un + "n+1 (1)

whereXn, Un and"n are the scalar system output, input and driven
noise, respectively. The nonlinear functionf is assumed to be known
while � is the real unknown parameter of the model. The standard least
squares (LS) estimator�n of � is given by

�n = s
�1
n�1

n

k=1

�k�1 (Xk � Uk�1); sn =

n

k=0

�
2

k + s (2)

where�n = f(Xn; . . . ; Xn�d+1). The positive constants is added in
order to avoid useless invertibility assumption.

The crucial role played byUn is to regulate the dynamic of the
process (Xn) by forcingXn to track, as closed as possible, a bounded
predictable reference trajectory (xn). Via the certainty equivalence
principleUn, commonly called the adaptive control of the system, is
given, for anyn � 0, by

Un = ��n�n + xn+1: (3)

Consequently, by substituting (3) into (1), we obtain the closed-loop
system

Xn+1 � xn+1 = �n + "n+1 where�n = (� � �n)�n: (4)

A wide range of literature concerning the strong consistency and the
tracking optimality is available in the linear framework where the func-
tion f in (1) is linear. We refer the reader to the most recent advances
[1], [3]–[7], [16], and the references theirin. One may naturally ex-
pect that some results established in the linear case can be extended to
the nonlinear framework where the functionf in (1) grows faster than
linear. However, in contrast with the linear situation, very few theoret-
ical results are available except the important contribution of Guo [8].
In the special cased = 1 andf(x) = xa with a � 4, he proved the
instability of the closed-loop system (4), even if the LS estimator�n
converges a.s. to the true parameter�. Moreover, in the general case
d � 1 and under some restrictive assumptions on the noise ("n), he
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established the global stability of (4), as soon as the growth rate of the
nonlinear functionf does not exceed the one of a polynomial of degree
a < 4. Finally, let us mention that related works in the nonparametric
framework can also be found in [9], [14], and [15].

The purpose of this note is to improve the stability results of [8]
thanks to a new strong law of large numbers for powers of martingales
[2], really suitable in the analysis of the asymptotic behavior of non-
linear regression models.

This note is organized as follows. Section II is devoted to the sta-
bility and optimality results of the closed-loop system (4). Moreover,
we also show the strong consistency of the LS estimator�n of � with
a sharp almost sure rate of convergence. In Section III, under some
suitable assumptions on the nonlinear functionf in (1), we establish
a central limit theorem (CLT), a law of iterated logarithm (LIL) and
several strong laws of large numbers associated with�n. Appendix A
contains the new strong law of large numbers for powers of martingales
[2] whereas all technical proofs are postponed to Appendixes B–D.

II. STABILITY , OPTIMALITY AND CONSISTENCY

First of all, let us introduce some definitions. The first one specifies
a wide class of functions associated with (1) whereas the second one
extends the usual definition of global stability and optimality.

Definition 1: We shall say that a functionf belongs to the class
C(a; b) wherea, b 2 anda � 1, if there exist four nonnegative
constantsc1, c2, c3, c4 such that, for allx 2 d

c1 + c2 k x k
b� jf(x)j � c3 + c4 k x k

a (5)

with b � 1 if c1 = 0 andb � 0 otherwise.
Definition 2: We shall say that the tracking is globally stable of

orderp � 1 if

lim sup
n!1

1

n

n

k=1

(Xk � xk)
2p

<1 a.s. (6)

whereas it is optimal of orderp � 1 if

lim
n!1

1

n

n

k=1

(Xk � xk)
2p = �(2p) a.s. (7)

where, for the nondecreasing sequence (Fn) of �-algebras events oc-
curring up to timen

�(2p) = lim
n!1

[ "2pn+1 j Fn] a.s. (8)

Our first result concerns the global stability and the strong consis-
tency.

Theorem 1: Consider the nonlinear autoregressive model (1) where
f belongs to the classC(a; b) with a < 4. Assume that ("n) is a mar-
tingale difference sequence such that

lim inf
n!1

[ "2n+1 j Fn] > 0 a.s. (9)

and satisfying, for some� > 2(2a� 1)

sup
n�0

[ j"n+1j
� j Fn] <1 a.s. (10)

Then, for any1 � p � a, the adaptive tracking is globally stable of
orderp. More precisely, for any1 � p � a, we have

n

k=1

(Xk � xk � "k)
2p = O(logn) a.s. (11)
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In addition,�n is a strongly consistent estimator of� with

�n � �

2

= O
log logn

n
a.s. (12)

Proof: The proof is given in Appendix B.
Remark 1: The classical global stability and result (11) withp = 1

were previously established in [8, Th. 2.2]. Nevertheless, our proof is
totally different from that of Guo as it mainly relies on the new strong
law of large numbers for powers of martingales given in Appendix A.
In addition, one can realize that we can avoid the useless condition [8,
eq. (23)] on the noise ("n). Finally, let us mention that (12) is the first
strong consistency result established in the nonlinear framework with
adaptive tracking.

Remark 2: The minoration assumption onjf j in (5) allows us to
prove thatn = O(sn) a.s. and to infer that�n converges to� a.s.
It is worth noting that no lower bound forjf j is required in [8]. This
is due to the fact that the stability analysis of [8] is concentrated on
the asymptotic behavior of the tracking errorXn � xn rather than the
estimation error�n � �.

We shall now focus our attention on the tracking optimality. To this
end, denote forp � 1

Cn(p) =
1

n

n

k=1

(Xk � xk)
2p and �n(p) =

1

n

n

k=0

"
2p
k :

Corollary 2: Assume thatf belongs to the classC(a; b)with a < 4.
In addition, suppose that ("n) is a martingale difference sequence such
that [ "2n+1 j Fn] = �2 a.s. and satisfying the moment condition (10).
If one can find1 � p � a such that�(2p), given by (8), exists, then
the adaptive tracking is optimal of orderp and we have

Cn(p)� �n(p)
2

= O
logn

n
a.s. (13)

In addition, if [ "2p�1n+1 j Fn] = 0 and if�(2p� 2) exists, then

lim
n!1

n

logn
Cn(p)� �n(p) = C

2

2p �(2)�(2p� 2) a.s. (14)

where�(2) = �2 and�(0) = 1.
Proof: The proof is given in Appendix B.

III. CLT AND STRONG LAWS

The purpose of this section is to establish a CLT and several strong
laws of large numbers associated with the LS estimator�n of �. We
shall avoid the minoration assumption onjf j in (5) by restricting
ourselves to the polynomial algebraP(a) with d variables and
total degree� a wherea � 1.

Lemma 3: Assume thatf2 belongs to the polynomial algebra
P(2a) with a � 1. In addition, suppose that ("n) is a martingale
difference sequence satisfying (9) and (10) together with

lim inf
n!1

1

n

n

k=d

f
2("k + xk; . . . ; "k�d+1 + xk�d+1) > 0 a.s. (15)

Then, we haven = O(sn) a.s. Moreover, ifa < 4 and (15) is strength-
ened by the convergence

lim
n!1

1

n

n

k=d

f
2("k + xk; . . . ; "k�d+1 + xk�d+1) = L a.s. (16)

whereL is a positive constant, then we have

lim
n!1

sn

n
= L a.s. (17)

Proof: The proof is given in Appendix C.
Theorem 4: Consider the nonlinear autoregressive model (1) where

f2 belongs to the polynomial algebraP(2a) with a < 4. In addi-
tion, suppose that ("n) is a martingale difference sequence such that
[ "2n+1 j Fn] = �2 a.s. and satisfying the moment condition (10). If

(16) holds, then we have the CLT

p
n(�n � �)

L�!N 0;
�2

L
(18)

and the LIL

lim sup
n!1

n

2 log logn

1=2

(�n � �)

= � lim inf
n!1

n

2 log logn

1=2

(�n � �) =
�p
L

a.s. (19)

In particular

lim sup
n!1

n

2 log logn
(�n � �)2 =

�2

L
a.s. (20)

Finally, for any1 � p � a, we also have the strong law

lim
n!1

1

logn

n

k=1

k
p�1(�k � �)2p =

�2p(2p)!

Lp 2p p!
a.s. (21)

Proof: The proof is given in Appendix D.
Remark 3: One can observe that the condition (16) is not really re-

strictive as it is fulfilled in several tracking situations. For example,
assume for the sake of simplicity thatxn ! � a.s. In addition, suppose
that for any0 � q � 2a

lim
n!1

"
q
n+1 j Fn = �(q) a.s.

with �(0) = 1, �(1) = 0 and�(2) = �2. 8x 2 d, let P (x) =
f2(x). In the cased = 1, we find via a Taylor expansion ofP that

L =

2a

i=0

@iP (0)

i !@xi

i

j=0

C
j
i �(j) �

i�j

and, in the cased = 2, we obtain

L =

2a

i=0

2a�i

j=0

@i+jP (0; 0)

i ! j!@xi @yj

i

k=0

j

`=0

C
k
i C

`
j �(k)�(`) �

i+j�k�`
:

IV. CONCLUSION

In this note, we carried out the complete stability analysis of the
adaptive tracking for the single-input–single-output nonlinear autore-
gressive model, linearly parameterized by a one-dimensional unknown
parameter�. We have extended and refined [8], thanks to a new strong
law of large numbers for powers of martingales [2], really suitable in
the analysis of the asymptotic behavior of nonlinear regression models.
It would be a very attractive challenge for the control community to
generalize our approach to the multidimensional parameter case.

APPENDIX A

The theory of martingales is at the core of the greater part of in-
vestigations concerning stochastic regression models: a strong law of
large numbers for martingales [4], [11], [13], [20] is extensively used to
prove strong consistency results and the fluctuations are established via
a CLT for martingales [10]. The strong law is really suitable for linear
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regression models and almost all theoretical advances has been made
in the linear situation. Unfortunately, this strong law is not adapted to
the nonlinear framework. The purpose of this appendix is to present a
new strong law of large numbers for martingales [2], really suitable in
the analysis of nonlinear regression models. More precisely, let ("n) be
a martingale difference sequence adapted to an appropriate filtration
(Fn) and let (�n) be an adapted sequence of random variables. For all
n � 0, set

Mn = M0 +

n

k=1

�k�1"k and sn =

n

k=0

�2k + s: (A.1)

Theorem A.1:Assume that ("n) is a martingale difference sequence
such that, for somep � 1 and for some� > 2(2p� 1)

sup
n�0

[ j"n+1j
�jFn] <1 a.s. (A.2)

Assume also thatsn increases a.s. to infinity. Then

M2
n

sn�1

p

=O(log sn) a.s. (A.3)

n

k=1

spk � spk�1
spk

M2
k

sk�1

p

=O(log sn) a.s. (A.4)

Theorem A.2:Assume that ("n) is a martingale difference sequence
satisfying [ "2n+1jFn] = �2 a.s. and for somep � 1, the moment
condition (A.2). Assume also thatsn increases a.s. to infinity with
�2n = o(sn) a.s. Then

lim
n!1

1

log sn

n

k=1

�2k
sk

M2
k

sk�1

p

=
�2p (2p)!

2p p!
a.s. (A.5)

Remark 4: The first strong law of large numbers for martingales is
due to [13]. It was refined in [11] and later in [19] and [20]. In the
particular casep = 1, Theorem A.1 corresponds to [4, Th. 1.3.24],
which is extensively used in the analysis of linear regression models.
Theorem A.2 establishes the convergence of the moment of order 2p
in the almost sure central limit theorem for martingales [2].

APPENDIX B

This appendix is devoted to the proofs of Section II. We first start
with a very useful Lemma which is at the core of all investigations
concerning the excitation and the stability of the sequence (�n) where
�n = f(Xn; Xn�1; . . . ; Xn�d+1).

Excitation and Stability

Lemma B.1: Assume thatf belongs to the classC(a; b) with a �
1. In addition, suppose that ("n) is a martingale difference sequence
satisfying (9) and (10). Then, we have

n =O(sn) a.s. (B.1)

log sn+1 =O(log sn) a.s. (B.2)

Moreover, ifa < 4, we also have

sn = O(n) a.s. (B.3)

Proof: For anyn � 0, set'n = (Xn; . . . ; Xn�d+1). As the
functionf belongs toC(a; b) and�n = f('n), it clearly follows from
(5) that�2n � c21 + c22 k 'n k

2b. Consequently

sn � s+ nc21 + c22

n

k=0

k 'k k
2b : (B.4)

On the one hand, the excitation result (B.1) obviously holds ifc1 > 0.
On the other hand, assume thatc1 = 0 so thatb � 1. We immediately
deduce from (B.4) that

sn � c22

d

l=1

n

k=d

X2b
k�l+1: (B.5)

Moreover, we obtain from the closed-loop (4), together with the vari-
ance condition (9), that

lim inf
n!1

1

n

n

k=1

X2

k > 0 a.s. (B.6)

Hence, (B.1) follows from (B.5), (B.6), and the Hölder inequality. Fur-
thermore, we derive from (5) that�2n � 2c23+2c24 k 'n k

2a. Moreover,
we obtain from (4) thatX2

n+1 � 3(�2n+x2n+1+"2n+1). Consequently,
as the reference trajectory (xn) is a.s. bounded, we have for alln � d

�2n = O

d

k=1

�2an�k +

d

k=1

"2an�k+1 + 1 a.s. (B.7)

which clearly leads to

sn+1 = O

n

k=d

d

l=1

�2ak�l+1 +

d

l=1

"2ak�l+2 + 1 a.s. (B.8)

In addition, from the moment condition (10), it follows that
n

k=1
"2ak = O(n) a.s. However, we already saw thatn = O(sn)

a.s. Consequently, we obtain from (B.8) that one can find a positive
random variable� such that, forn large enough

sn+1 ��

n

k=d

d

l=1

�2ak�l+1 + sn a.s.

�d � san

n

k=1

�2k
sk

a

+ 1 a.s. (B.9)

Next, let us recall that�n = (� � �n)�n. We can easily deduce from
(1) and (2) that�n � � = s�1n�1Mn with Mn given by (A.1) where
M0 = �s. Hence, we immediately infer from (B.9) that

sn+1 � d � san

n

k=1

M2a
k �2ak

sak s
2a
k�1

+ 1 a.s. (B.10)

Furthermore, by the elementary fact that�2an � san�s
a
n�1 andsn � s,

we obtain from (B.10) that

sn+1 � d � san
1

sa

n

k=1

sak � sak�1
sak

M2
k

sk�1

a

+ 1 a.s. (B.11)

Finally, (A.4) and (B.11) ensure thatsn+1 = O(san log sn) which im-
plies (B.2). Now, the stability result (B.3) remains to be proved. It is
well known that (B.3) holds fora = 1 via the classical stability anal-
ysis for linear regression models [1], [3]–[5]. Hereafter, we shall as-
sume thata � 2. It follows from the moment condition (10) that
supk�n j"kj = o(nc) a.s. where1=� < c < 1=2(2a � 1). Hence,
(B.7) implies that

�2n+1 = O

d

k=1

�2an�k+1 + o(n2ac) a.s. (B.12)
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For anyn � 1, setrn = �2
n
log sn�1 = s

a�1
n�1. Similarly to (B.10), we

deduce from (B.12) that

rn+1 = O
log sn

sa�1n

d

k=1

M2a
n�k+1�

2a
n�k+1

s2an�k

+o
n2ac log sn

sa�1n

a.s. (B.13)

On the one hand, we already saw thatn = O(sn) a.s. On the other
hand, we know from (A.3) thatM2a

n = O(san�1 log sn) a.s. Thus, we
find via (B.13) that

rn+1 = O log sn

d

k=1

�2n�k+1 log sn�k+1

san�k
+ o(1) a.s. (B.14)

In addition, we obtain from (B.2) that, for any1 � k � d, log sn =
O(log sn�k) a.s. Moreover,log sn = o(sn) a.s. Consequently, (B.14)
reduces to

rn+1 = o

d

k=1

rn�k+1 + o(1) a.s.

which leads torn = o(1) a.s. Next, we claim that�2n = o(sn�1) a.s.
As a matter of fact, iftn = �2n=sn�1, it follows once again from (A.3)
and (B.12) that

tn+1 = O

d

k=1

�2an�k+1 log sn�k+1

snsan�k
+ o

1

s1�2acn

a.s.

Consequently, we obtain that

tn+1 = O

d

k=1

rn�k+1tn�k+1

s3�an

+ o(1) a.s. (B.15)

and, as soon asa < 4

tn+1 = O

d

k=1

rn�k+1tn�k+1 + o(1) a.s. (B.16)

One can observe that it is only at the implication from (B.15) to (B.16)
that we have to requirea < 4. Next, asrn = o(1), we deduce from
(B.16) that

tn+1 = o

d

k=1

tn�k+1 + o(1) a.s.

so thattn = o(1) a.s. which means that�2n = o(sn�1) a.s. We are
now in position to prove (B.3). We already saw that, for alln � 1,
�2an � san � san�1. Hence, we deduce from (A.4) that

n

k=1

sk�1
sk

a

�2ak = O(log sn) a.s.

Consequently, assn is a.s. equivalent tosn�1, we infer that

n

k=1

�2ak = O(log sn) a.s. (B.17)

Therefore, it follows from (B.8), together with (B.17), that
sn = O(log sn) + O(n) a.s. It clearly implies thatsn = O(n) a.s.
which completes the proof of Lemma B.1.

Proof of Theorem 1

It follows from (A.4), together with the fact thatsn is a.s. equivalent
to sn�1, that, for any1 � p � a

n

k=1

�2pk = O(log sn) a.s. (B.18)

Hence, assn = O(n) a.s., (B.18) implies (11) and the global sta-
bility of order p. It remains to prove the consistency result (12). On
the one hand, we deduce via (B.1), (B.12), and (B.18) that�2n =
O(log sn) + o(s2acn ) = o(s�n) a.s. with0 < � < 1. Consequently,
it follows from (A.1) and [19, Lemma 2] thatM2

n = O(sn log log sn)
a.s. On the other hand, we already saw in the proof of Lemma B.1 that
�n� � = s�1n�1Mn. Thus, it clearly implies (12), completing the proof
of Theorem 1.

Proof of Corollary 2

One can easily see from (4) that, for anyn � 1

n Cn(p)� �n(p) =Pn�1 +Qn

Pn =

n

k=0

�2pk ; Qn =

2p�1

`=1

n�1

k=0

C`
2p�

2p�`

k "`k+1: (B.19)

Then, we obtain (13) and (14) via the the same arguments as in the
proof [2, Cor. 7].

APPENDIX C

This appendix is concerned with the proof of Lemma 3. We shall
only carry out the proof ford = 2 inasmuch as it already contains all
the features for the general case. For allx, y 2 , we setP (x; y) =
f2(x; y). An easy calculation shows that for anyx, y, u, v 2

P (x+ u; y + v) = P (x; y) +

2a�1

i=0

2a�i�1

j=0

�ij(u; v) x
i yj

where

�ij(u; v) =
1

i ! j!

@i+jP (u; v)

@xi @yj
�

@i+jP (0; 0)

@xi @yj
:

For anyn � 1, set�n = "n + xn. We clearly have from (4)

sn+1 � s1 = Wn+1 +Qn+1 (C.1)

where

Wn+1 =

n

k=1

P (�k+1; �k): Qn+1 =

2a�1

i=0

2a�i�1

j=0

Qn+1(i; j)

with Qn+1(i; j) = n

k=1
�ij(�k; �k�1) �

i
k+1 �

j

k. For any integer
1 � p � a, denote�n(p) = n

k=1
�2pk and�n = �n(1). First of

all, we deduce from the elementary fact that the polynomial�ij(u; v)
is of total degree2a � (i + j) that

jQn+1(i; j)j = O

n

k=1

2a�i�j

`=1

j�k+1j
i j�kj

j j�kj
` + j�k�1j

` :
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Hence, we obtain from the Cauchy–Schwarz inequality that

jQn+1(i; j)j =O(
p
n �n)

+O sup
k�n

j�k+1j
i+j 2a�i�j

`=2

n

k=1

j�kj`

jQn+1(i; j)j =O(
p
n �n)

+ o nc(i+j)
2a�(i+j)

`=2

n

k=1

j�kj` a.s:

where1=� < c < 1=2(2a� 1) andi+ j � 2a� 1. Consequently, as
c(i + j) < 1=2, we obtain that

jQn+1(i; j)j = O(
p
n �n) + o

p
n

a

p=1

�n(p) a.s. (C.2)

We are now in position to prove Lemma 3. First, assume thatsn
converges a.s. Then, we clearly have�n = o(1) a.s. In addition,
the classical strong law of large numbers for martingales ensures
that Mn, given by (A.1), converges a.s. Next, let us recall that
�n = �s�1n�1Mn �n. Consequently, we obtain that�n = o(1) a.s.
so that, for anyp � 1, �n(p) = o(n) a.s. Therefore, we derive
that Qn+1 = o(n) a.s. Finally, (C.1) immediately implies that
Wn+1 = o(n) which is not possible by (15). Hence,sn increases a.s.
to infinity. However, at this stage, we do not know how fast growssn
to infinity. On the one hand, assume that

sup
n�1

sn+1
sn

=1 a.s.

Then, forn large enough,sn+1 � Csn with C > 1, which clearly
leads ton = O(sn) a.s. On the other hand, assume that

sup
n�1

sn+1
sn

<1 a.s.

Hence, we deduce from (A.4) that for any1 � p � a, �n(p) =
O(log sn) a.s. Therefore, (C.2) immediately implies thatjQn+1j =
O(
p
n log sn) a.s. so thatQ2

n+1 = o(nsn+1) a.s. Consequently, we
infer from (C.1) that

sn+1
n

� Wn+1

n

2

= o
sn+1
n

a.s. (C.3)

Hereafter, suppose that

lim inf
n!1

sn+1
n

= 0 a.s.

Then, we deduce via (C.3) thatWn+1 = o(n) a.s. which is one more
time not possible by (15). Hence

lim inf
n!1

sn+1
n

> 0 a.s.

which obviously leads ton = O(sn) a.s. and achieves the proof of the
first part of Lemma 3. Finally, the convergence result (17) remains to
be proved. Asf2 belongs to the polynomial algebraP(2a) with a < 4
andn = O(sn), proceeding exactly as in the proof of Lemma B.1,
we find thatsn = O(n) and�2n = o(sn�1) a.s. Hence,sn is a.s.
equivalent tosn�1. Consequently, we deduce from (C.2) thatQn+1 =
o(n) a.s. Therefore, (17) immediately follows from (C.1) together with
(16), which completes the proof of Lemma 3.

APPENDIX D

We finally prove the asymptotic results of Theorem 4. Their proofs
rely mainly on the almost sure convergence (17). On the one hand, since

("n) has finite conditional moment of order� > 2, (18) immediately
follows from (17) together with the martingale CLT (see, e.g., [10, Cor.
3.1]). On the other hand, we deduce from the moment condition (10)
together with Chow’s lemma that n

k=1 j"kj� = O(n) a.s. where� is
such that2(2a� 1) < � < �. In addition, we also obtain from (B.18)
that n

k=1 j�kj� = o(n) a.s. Furthermore, asf2 belongs toP(2a)
with a � 1, it is not difficult to see that, similarly to (B.7)

�2n = O

d

k=1

�2an�k +

d

k=1

"2an�k+1 + 1 a.s. (D.1)

Consequently, if = �=2, we deduce that n

k=1 j�kj = O(n) a.s.
Since > 2, it clearly implies that

1

n=1

j�njp
n



<1 a.s. (D.2)

Hence, (17) together with (D.2) ensure that the conditions of the martin-
gale LIL are satisfied (see. e.g., [17, Th. 3]) which achieves the proof of
(19) and (20). Finally the strong laws given by (21) immediately follow
from (17) and [2, Cor. 9], completing the proof of Theorem 4.
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