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IN ADAPTIVE TRACKING∗
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Abstract. We investigate the asymptotic properties of a recursive kernel density estimator of
the driven noise of multivariate ARMAX models in adaptive tracking. We provide an almost sure
pointwise and uniform strong law of large numbers as well as a pointwise and multivariate central
limit theorem. We also carry out a goodness-of-fit test together with some simulation experiments.
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1. Introduction. Since the pioneer work of Aström and Wittenmark [1], a wide
range of literature is available on parametric estimation and adaptive tracking for
linear regression models [4], [5], [6] [9], [13], [14], [15], [16]. However, only a few
references may be found on nonparametric estimation in adaptive tracking [20], [21],
[22], [25]. Our goal is to investigate the asymptotic properties of a kernel density
estimator associated with the driven noise of a linear regression in adaptive tracking
and to carry out a goodness-of-fit test. Consider the multivariate ARMAX model of
order (p, q, r) given, for all n ≥ 0, by

(1.1) A(R)Xn = B(R)Un + C(R)εn,

where Xn, Un, and εn are the d-dimensional system output, input, and driven noise,
respectively. Denote by R the shift-back operator and set

A(R) = Id −A1R− · · · −ApR
p,

B(R) = B1R + · · · + BqR
q,

C(R) = Id + C1R + · · · + CrR
r,

where Ai, Bj , and Ck are unknown matrices and Id is the identity matrice of order d.
For the sake of simplicity, we shall assume that the high frequency gain matrix B1 is
known with B1 = Id. Hence, the unknown parameter of the model is given by

θ t = (A1, . . . , Ap, B2, . . . , Bq, C1, . . . , Cr).

Relation (1.1) can be rewritten as

(1.2) Xn+1 = θ tΨn + Un + εn+1,
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where

Ψ t
n =

(
X t

n, . . . , X
t
n−p+1, U

t
n−1, . . . , U

t
n−q+1, ε

t
n, . . . , ε

t
n−r+1

)
.

The most common way for estimating θ is to make use of the extended least-squares
(ELS) algorithm given, for all n ≥ 0, by

θ̂n+1 = θ̂n + S−1
n Φn

(
Xn+1 − Un − θ̂ t

nΦn

)t

,

ε̂n+1 = Xn+1 − Un − θ̂ t
nΦn,

Φ t
n =

(
X t

n, . . . , X
t
n−p+1, U

t
n−1, . . . , U

t
n−q+1, ε̂

t
n, . . . , ε̂

t
n−r+1

)
,

where the initial value θ̂0 may be arbitrarily chosen. Moreover,

Sn =

n∑
i=0

ΦiΦ
t
i + S,

where S is a positive definite and deterministic matrix introduced in order to avoid
useless invertibility assumption. The crucial role played by the control Un is to regu-
late the dynamic of the process (Xn) by forcing Xn to track step-by-step a bounded
predictable reference trajectory x∗

n. Via the certainty equivalence principle [1], the
adaptive tracking control Un is given, for all n ≥ 0, by

(1.3) Un = x∗
n+1 − θ̂ t

n Φn.

By substituting (1.3) into (1.2), we obtain the closed-loop system

(1.4) Xn+1 − x∗
n+1 = πn + εn+1,

where

πn = θ tΨn − θ̂ t
nΦn

is the prediction error at time n. In the following, we shall assume that the driven
noise (εn) is a sequence of centered independent and identically distributed random
vectors with positive definite covariance matrix Γ and unknown probability density
function denoted by f .

The purpose of this paper is to study the asymptotic properties of a kernel density
estimator (KDE) of f . Since the pioneer works of Parzen [18] and Rosenblatt [23],
the asymptotic properties of such a kernel estimator have been widely investigated in
the context of independent and identically distributed random variables as well as for
mixing random variables. We refer the reader to [10], [11], [24] for some excellent books
on density estimation for stationary processes. Although the stability of ARMAX
models in adaptive tracking has been deeply investigated in the literature [9], [12], one
can realize that kernel density estimation results are not available in adaptive tracking.

Let us now define our KDE of f associated with model (1.2). When the sequence
(εn) is observable, the traditional Parzen–Rosenblatt KDE of f is given, for all x ∈ R

d

and n ≥ 1, by

fn(x) =
1

nhd
n

n∑
i=1

K

(
εi − x

hn

)
,
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where the kernel K is a chosen density function and the bandwidth (hn) is a sequence
of positive real numbers decreasing to zero. In our situation, the sequence (εn) is of
course unobservable. However, when the tracking objective is fullfilled, the prediction
error πn is as close as possible to zero. Consequently, via (1.4), we can choose Xn−x∗

n

as a predictor of εn. Moreover, since we are in an adaptive tracking framework, it is
more suitable to make use of a recursive kernel density estimator (RKDE) of f given,
for all x ∈ R

d and n ≥ 1, by

(1.5) f̂n(x) =
1

n

n∑
i=1

1

hd
i

K

(
Xi − x∗

i − x

hi

)
.

Our purpose is first to show that f̂n behaves pretty well as a RKDE of f in adap-
tive tracking and second to carry out a goodness-of-fit test for f based on f̂n. Such a
goodness-of-fit test is very popular in time series, in particular, for testing the normal-
ity hypothesis. For independent and identically distributed samples, we can mention
the well-known and very popular Kolmogorov–Smirnov and Cramér–Von Mises sta-
tistical tests based on the empirical distribution function as well as the Bickel and
Rosenblatt test [7] based on a KDE. Recently, for stationary autoregressive processes,
several authors have proposed goodness-of-fit tests based on KDE [2], [17]. However,
to the best of our knowledge, no work is concerned with asymptotic properties of
KDE in adaptive tracking.

The paper is organized as follows. Section 2 is devoted to the asymptotic behavior
of f̂n. We establish the almost sure pointwise and uniform convergence of f̂n to f
as well as a pointwise law of iterated logarithm (LIL) and a pointwise multivariate
central limit theorem (CLT). Section 3 is concerned with the goodness-of-fit test for
f . Finally, some simulation experiments are given in section 4. All technical proofs
are postponed in appendices.

2. Main results. In the following, we shall assume that the kernel K is a non-
negative function, bounded with compact support, such that∫

Rd

K(t)dt = 1 and

∫
Rd

K2(t)dt = τ2.

For example, for some s > 0 and some known positive constants as, bs, cs, one can
make use of the uniform kernel on the sphere of R

d with radius s, K(t) = as1I(‖t‖≤s),

the Epanechnikov kernel with scaling factor s, K(t) = bs
(
1− ‖ t‖2/s2

)
1I(‖t‖≤s), and

the Gaussian kernel with truncation level s, K(t) = cs exp(− ‖ t‖2/2)1I(‖t‖≤s).
Moreover, we shall assume that the bandwidth (hn) is a sequence of positive real

numbers, decreasing to zero, such that nhd
n tends to infinity and

n∑
i=1

hi = O(nhn).

This mild condition, due to the recursive form of f̂n, is clearly not restrictive. For
example, one can choose hn = n−α with α ∈ ]0 , 1/d[.

Furthermore, we shall also make use of the classical assumptions of causality and
passivity as well as the traditional smoothness hypothesis on the probability density
function f .
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Causality [A1]. For all z ∈ C with |z| ≤ 1, det(z−1B(z)) �= 0.
Passivity [A2]. For all z ∈ C with |z| = 1, det(C(z)) �= 0 and C−1(z) > 1

2Id.
Density [A3]. The function f is positive and differentiable with bounded gradient.

We shall now propose several asymptotic results for the RKDE f̂n of f , the first one
dealing with the almost sure convergence properties of f̂n.

Theorem 2.1. Assume that [A1] to [A3] hold and suppose that (εn) has finite
moment of order a > 2. In addition, assume that nhd

n tends to infinity faster than

(log n)2. Then, for any x ∈ R
d, f̂n(x) converges a.s. to f(x). As soon as the bandwidth

(hn) satisfies max(nhd+2
n , nbhd

n) = o(log log n) for some b ∈]2/a, 1[, we also have

(2.1) lim sup
n→∞

(
nhd

n

2τ2 ‖f ‖∞ log log n

)1/2 ∣∣∣f̂n(x) − f(x)
∣∣∣ ≤ 1 a.s.

Moreover, assume that the kernel K is Lipschitz and that the bandwidth (hn) is given

by hn = n−α with α ∈]0, 1/d[. Then, f̂n converges a.s. to f , uniformly on all compact
sets of R

d and, for any β ∈](1 + c)/2, 1[ with c = max(b, αd),

(2.2) sup
x∈Rd

∣∣∣f̂n(x) − f(x)
∣∣∣ = O

(
n−α

)
+ o

(
nβ−1

)
a.s.

Proof. The proof is given in Appendix A.
Remark 1. The bandwidth condition associated with the almost sure pointwise

convergence is clearly not restrictive and it is satisfied when hn = n−α with α ∈]0, 1/d[.
In this particular case, the bandwidth condition required for the LIL is obviously
satisfied as soon as α ∈]δ, 1/d[ with δ = max(1/(d + 2), b/d).

Remark 2. In the particular case of controlled autoregressive process

(2.3) Xn+1 = A1Xn + · · · + ApXn−p+1 + Un + εn+1,

the assumptions [A1] and [A2] are clearly useless and the associated prediction errors
sequence (πn) satisfies (see, e.g., [5])

(2.4)

n∑
i=0

‖πi ‖2= O(log n) a.s.

Thanks to this sharp result on the sequence (πn), we only have to assume that
max(nhd+2

n , hd
n log n) = o(log log n) for the LIL. This bandwidth condition is imme-

diately satisfied when hn = n−α with α ∈]1/(d + 2), 1/d[. Moreover, for the uniform
convergence, it is only necessary to assume that β ∈](1 + αd)/2, 1[. All of the above
is also true for the scalar nonlinear controlled autoregressive process

(2.5) Xn+1 = θ ϕ(Xn, . . . , Xn−p+1) + Un + εn+1

under suitable moment assumption on (εn) and as soon as the function ϕ : R
p → R

does not increase to infinity faster than a polynomial of degree < 4 [6]. We are again
able to deduce such results because the associated prediction errors sequence (πn)
satisfies (2.4). Finally, Theorem 2.1 holds for the RKDE associated with nonlinear
controlled autoregressive processes as soon as the associated prediction errors sequence
(πn) satisfies a stability property such as (2.4).

Our second result is a pointwise and a multivariate CLT for f̂n.
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Theorem 2.2. Assume that [A1] to [A3] hold and suppose that (εn) has fi-
nite moment of order a > 2. Moreover, assume that the bandwidth (hn) satisfies
max(nhd+2

n , nbhd
n) = o(1) for some b ∈]2/a, 1[, together with

(2.6) lim
n→∞

hd
n

n

n∑
i=1

h−d
i = 
h

for some finite constant 
h > 0. Then, for any x ∈ R
d, we have the pointwise CLT

(2.7) Gn(x) =
√

nhd
n

(
f̂n(x) − f(x)

) L−→ N
(
0, τ2
hf(x)

)
= G(x).

In addition, for N distinct points x1, . . . , xN of R
d, we also have

(2.8) (Gn(x1), . . . , Gn(xN ))
L−→ (G(x1), . . . , G(xN )) ,

where G(x1), . . . , G(xN ) are independent Gaussian random variables.
Proof. The proof is given in Appendix B.
Remark 3. Convergence (2.7) is identical to the one obtained by Duflo [12] for

stationary processes. Besides, it is worthless to require the bandwidth condition (2.6)
for the nonrecursive KDE of f , and 
h has to be replaced by 1 in (2.7). Finally, if
hn = n−α, it is necessary to assume that α ∈]δ, 1/d[ with δ = max(1/(d + 2), b/d)
and we obviously have 
h = (1 +αd)−1. In addition, for the controlled autoregressive
processes given by (2.3) or (2.5), we only have to assume that α ∈]1/(d + 2), 1/d[.

Remark 4. When the density function f belongs to C2(Rd) with a bounded
second derivative and for symmetric kernel K, we can relax the bandwidth condition
by max(nhd+4

n , nbhd
n) = o(1).

3. Application to a goodness-of-fit test. We shall now propose a statistical
test associated with the probability density function f based on the convergence
results of section 2. We wish to test

H0 : 〈〈 f = f0 〉〉 vs H1 : 〈〈 f �= f0 〉〉

where f0 is a given probability density function. It is well known that such a goodness-
of-fit test is very important and it has been widely investigated in time series analysis
since the pioneer works of Kolmogorov–Smirnov and Cramér–Von Mises. Indeed,
many statistical procedures require the assumption of normality for the driven white
noise (see, e.g., [3] or [8]). Consequently, a goodness-of-fit test for the white noise
density is of particular interest. However, no such a statistical test is available in
the adaptive tracking framework, although several situations require the normality
assumption on the driven white noise. Our purpose is to provide a goodness-of-fit
test for f based on the RKDE f̂n. Such an approach has been already used by Bickel
and Rosenblatt [7]. Indeed, for the independent and identically distributed sample,
they proposed a statistical test based on the integrated quadratic deviation between
the true density and a KDE of f . This approach has been extended to the scalar
autoregressive framework by Lee and Na [17] and more recently by Bachmann and
Dette [2]. However, due to some technical reasons, it seems impossible to extend this
approach to our adaptive tracking context. Therefore, we propose a new strategy
and we carry out a goodness-of-fit test for f based on the multivariate CLT for f̂n
together with the LIL. Our statistical test consists of a suitably normalized sum of
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the quadratic deviation between the true density and the RKDE f̂n evaluated on N
distinct points of R

d. More precisely, it is defined by

Tn(N) =
1

τ2
h

N∑
j=1

(
f̂n(xj) − f0(xj)

)2

f̂n(xj)
,

where x1, . . . , xN are N distinct points of R
d. We shall make use of

σ2 =
1

τ2
h

N∑
j=1

(f(xj) − f0(xj))
2

f(xj)
and λ2 =

1

τ2
h

N∑
j=1

(f2(xj) − f2
0 (xj))

2

f3(xj)
.

Theorem 3.1. Assume that [A1] to [A3] hold and suppose that (εn) has finite
moment of order a > 2. Moreover, assume that the bandwidth (hn) shares the same
assumptions as in Theorem 2.2 and is such that nhd

n goes to infinity faster than
(log n)2. Then, under H0,

nhd
n Tn(N)

L−→ χ2(N).(3.1)

Moreover, under H1 and if one can find x ∈
{
x1, x2, . . . , xN

}
such that f(x) �= f0(x),

then Tn(N) converges a.s. towards σ2. In addition, we also have√
nhd

n

(
Tn(N) − σ2

) L−→ N
(
0, λ2

)
.(3.2)

Remark 5. According to these asymptotic results, it is possible to construct a
goodness-of-fit test associated with f . On the one hand, under the null hypothesis H0,
we can approximate for n large enough the distribution of nhd

n Tn(N) by a χ2(N) one.
On the other hand, under the alternative hypothesis H1, if σ2 is positive, nhd

n Tn(N)
goes a.s. to infinity, which guarantees that the asymptotic power of our test is equal
to 1. From a practical point of view, the null hypothesis H0 will be rejected at level
δ whenever nhd

n Tn(N) > aδ where aδ stands for the (1 − δ) quantile of the χ2(N)
distribution. Finally, one can observe that the weak convergence (3.2) allows us to
evaluate the probability of the type II error of our test.

Remark 6. It is also possible to make use of the test statistic Zn(N) defined by

Zn(N) =
1

τ2
h

N∑
j=1

(
f̂n(xj) − f0(xj)

)2

f0(xj)
.

In that case, Theorem 3.1 holds with

σ2 =
1

τ2
h

N∑
j=1

(f(xj) − f0(xj))
2

f0(xj)
and λ2 =

4

τ2
h

N∑
j=1

(f(xj) − f0(xj))
2f(xj)

f2
0 (xj)

.

This statistical test should improve the empirical level under H0, but it should cer-
tainly degrade the empirical power under H1. Nevertheless, it is easier to compute
than Tn(N) because it allows one to avoid the division by f̂n(xj), which can be equal
to zero due to the use of a compactly supported kernel.
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Proof. The proof is straightforward by use of Theorem 2.1 together with Theo-
rem 2.2. As a matter of fact, we have the decomposition

(3.3) Tn(N) − σ2 = An + Bn,

where

An =
1

τ2
h

N∑
j=1

(
f̂n(xj) − f(xj)

)2

f̂n(xj)
,

Bn =
1

τ2
h

N∑
j=1

(
f̂n(xj) − f(xj)

)
f̂n(xj)

(f2(xj) − f2
0 (xj))

f(xj)
.

We can deduce from (2.8) and the pointwise almost sure convergence of f̂n to f that√
nhd

n

τ2
h

⎛⎝ f̂n(x1) − f(x1)√
f̂n(x1)

, . . . ,
f̂n(xN ) − f(xN )√

f̂n(xN )

⎞⎠ L−→ N (0, IN ) ,(3.4)

where IN stands for the identity matrix of order N . Hence, it immediately follows
from (3.4) that

(3.5) nhd
nAn

L−→ χ2(N).

Consequently, we clearly obtain (3.1) from (3.3) together with (3.5) since, under
the null hypothesis H0, σ

2 and Bn vanish. Under the alternative hypothesis H1, it
is straighforward to see that Tn(N) converges a.s. towards σ2 via the almost sure

pointwise convergence of f̂n to f . Only convergence (3.2) remains to be proven. On
the one hand, by the pointwise LIL, we infer that

|An| = O

(
log log n

nhd
n

)
a.s.,

which implies that

(3.6)
√
nhd

nAn = o(1) a.s.

as nhd
n goes to infinity faster than (logn)2. On the other hand, we can deduce from

(3.4) that

(3.7)
√
nhd

nBn
L−→ N

(
0, λ2

)
.

Finally, convergence (3.2) immediately follows from the conjunction of (3.3), (3.6),
and (3.7), which completes the proof of Theorem 3.1.

4. Simulation experiments. In this section, we investigate the finite sample
properties of our statistical test under both hypotheses H0 and H1 without some
bootstrap procedure as is usual in this context of nonparametric tests. Since it has
never been experimented, we shall not restrict ourselves to models of form (1.2), but
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Fig. 4.1.

we will also consider some closely related stationary models. Our goal is to show that
our statistical test behaves pretty well in many different situations. The different
models that we will study are given as follows.

(WN) Xn = εn,

(AR) Xn+1 = θXn + εn+1,

(ARX) Xn+1 = θXn + Un + εn+1,

(NARX) Xn+1 = θX2
n + Un + εn+1,

where (εn) is a sequence of centered independent and identically distributed random
variables with probability density function f . We choose θ = 7/10, θ = 2, and θ = 1/2
for the AR, ARX, and NARX models, respectively. We consider three choices of noise
distributions, given in Figure 4.1, that we combine two-by-two in order to study the
performances of our statistical test under both H0 and H1. The first one is the
standard normal distribution

f0(x) =
1√
2π

exp

(
−x2

2

)
.

The second one is the normalized double exponential distribution

f1(x) =
1√
2

exp
(
−
√

2 |x|
)
.

The last one is the standardized chi-square distribution with twelve degrees of freedom

f2(x) =
9

5
(x +

√
6)5 exp

(
−
√

6(x +
√

6)
)

1I(x≥−
√

6).

For AR, ARX, and NARX models, we estimate the unknown parameter θ by use
of the standard least-squares estimator θ̂n. For the AR model, the probability density
function f is estimated using the RKDE given by (1.5) where Xn − x∗

n is replaced
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by Xn − θ̂nXn−1. For ARX and NARX models, the adaptive control Un is given by

Un = −θ̂nXn and Un = −θ̂nX
2
n, respectively.

For each model and each test of H0 against H1, we base our estimations on 800
independent realizations of sample sizes n = 200, 500, and 1000. We are interested
in the empirical level under H0 to be compared with the theoretical level equal to
5% and the empirical power under H1, as well as the closeness between the simulated
distribution of our statistical test and the corresponding theoretical distribution. The
implementation of our statistic test Tn(N) requires the choice of design points together

with the specification of a bandwidth and a kernel for the RKDE f̂n. The RKDE f̂n
is constructed by use of the Epanechnikov kernel

K(t) =
3

4

(
1 − t2

)
1I(|t|≤1)

and the bandwidth hn = n−1/3. For the denominator of Tn(N), we use the Gaussian
kernel and the usual bandwidth hn = n−1/5. Via this choice, we avoid a possible
division by zero and we provide a smoother version for the estimation of f . Finally,
for ARX and NARX models, we use a short learning period of τ = 100 time steps.
This learning period allows us to forget the transitory phase.

For the choice of N and the points x1, · · · , xN , we use the design points selection
rule proposed by Poggi and Portier and fully described in [19]. More precisely, we
proceed as follows. Starting from an estimate of the distribution of the driven noise,
we choose N equidistant points x1 · · · , xN so that the density at those points is not too
small and in such a way that they are sufficiently distant to ensure sufficient accuracy
in the use of the multivariate CLT. Typically, we choose points x1, · · · , xN such that
the distance between two neighboring points is 4n−1/3. This last condition allows us
to make sure that the independence property in the multivariate CLT, which holds
asymptotically, remains true for small to moderate sample sizes. We take N = 8, 13,
and 22 equidistant points for sample sizes n = 200, 500, and 1000, respectively. It
should be noted that only a few number of points is needed to make a decision.

In the sequel, the abbreviations Gf0, Gf1, and Gf2 mean that the driven noise (εn)
is generated with the normal f0 distribution, the double exponential f1 distribution,
and the chi-square f2 distribution, respectively, while Hf0, Hf1, and Hf2 mean that
we are testing the assumptions H0 : 〈〈 f = f0 〉〉, H0 : 〈〈 f = f1 〉〉, and H0 : 〈〈 f = f2 〉〉,
respectively. Finally, as we have chosen a test level α = 5% and we have generated
800 trials, the Kolmogorov–Smirnov fitting statistic in italic has to be compared with
the critical value 0.048.

We shall now comment on the test results contained in Tables 4.1–4.4. First of all,
one can verify that our statistical test behaves pretty well under H0. Indeed, for each
model and each noise distribution, the empirical level is close to the 5% theoretical
value level as one can realize with the values in bold. In addition, the simulated
distribution of n2/3Tn(N) is close to the χ2(N) distribution as one can observe with
the values in italic of the Kolmogorov–Smirnov fitting statistic to be compared with
the critical value at 5% equal to 0.048. Next, one can verify that the empirical power
increases with the sample size, from 20% to 40% for n = 200, to 96% to 100% for
n = 1000; it is more difficult to decide between f0 and f2 than between f1 and f2,
which is the easier situation. Finally, if one superimposes the four tables, one can
observe that the results for the different models are almost the same. In conclusion,
our statistical test behaves pretty well for small to moderate sample sizes and for a
large class of models.
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Table 4.1

WN model. Results under H0 and H1 with test level 5%. Empirical level in bold and per-
centage of correct decisions.

n = 200, N = 8 n = 500, N = 13 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0
4.2%
0 .035

35.7% 26.2%
5.3%
0 .029

84.1% 70%
5.2%
0 .024

99.8% 98.6%

Gf1 49%
5.3%
0 .047

74.1% 91.2%
5.1%
0 .041

99.3% 100%
4.2%
0 .030

100%

Gf2 19.2% 53.5%
4.2%
0 .047

60% 97.3%
4.7%
0 .031

96.7% 100%
4.5%
0 .009

Table 4.2

AR model. Results under H0 and H1 with test level 5%. Empirical level in bold and percentage
of correct decisions.

n = 200, N = 8 n = 500, N = 13 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0
4.5%
0 .045

31.2% 25.6%
4.8%
0 .014

82% 65%
3.7%
0 .023

99.8% 98.8%

Gf1 49.7%
5.7%
0 .032

73.1% 90.5%
5%

0 .014
99.1% 100%

4.8%
0 .019

100%

Gf2 19.3% 54.6%
3.7%
0 .045

62% 96.6%
3.5%
0 .022

96.6% 100%
3.8%
0 .013

Table 4.3

ARX model. Results under H0 and H1 with test level 5% and learning period τ = 100.
Empirical level in bold and percentage of correct decisions.

n = 200, N = 8 n = 500, N = 13 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0
3.8%
0 .042

35.7% 28%
4.2%
0 .029

81.5% 66%
3.7%
0 .018

99.7% 98.2%

Gf1 45.8%
5.5%
0 .053

71.5% 87.5%
4.7%
0 .021

99.3% 100%
5%

0 .022
100%

Gf2 21.2% 54.5%
3.2%
0 .029

62% 95.6%
2.5%
0 .040

96.7% 100%
5.1%
0 .029

Table 4.4

NARX model. Results under H0 and H1 with test level 5% and learning period τ = 100.
Empirical level in bold and percentage of correct decisions.

n = 200, N = 8 n = 500, N = 13 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0
3%

0 .037
37.1% 28.5%

4.8%
0 .029

83.5% 68.2%
4.3%
0 .037

99.5% 98.6%

Gf1 44.6%
5.2%
0 .021

72% 89.8%
4.5%
0 .022

99.2% 100%
5.1%
0 .017

100%

Gf2 19.8% 58.3%
3.7%
0 .021

63.2% 95.5%
4.7%
0 .05

97.2% 100%
5%

0 .039
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Fig. 4.2.

Figure 4.2 illustrates the empirical level and power of our test for the NARX
model. We base our estimation on 800 trials of sample size n = 500 with N = 13
equidistant points. The driven noise (εn) is generated with the normal distribution
f0, and we are successively testing the assumptions Hf0, Hf1, and Hf2. On the one
hand, when we test the hypothesis Hf0, we can observe that the distribution of our
statistical test n2/3Tn(N) is superimposed with the χ2(N) one. It clearly illustrates
the good approximation of the distribution of n2/3Tn(N) by a χ2(N) one under Hf0

for moderate sample size. On the other hand, when we test the hypothesis Hf1 as well
as Hf2, we can effectively see that the distribution of our statistical test n2/3Tn(N)
is totally different from the χ2(N) one. Consequently, the power of separation of our
statistical test is clearly significant.

Appendix A. This appendix is devoted to the proof of Theorem 2.1. In order

to prove the asymptotic properties of our RKDE f̂n of f , we are led to introduce the

martingale (Mn) associated with the sequence (f̂n). To be more precise, we infer from
(1.5) that for all x ∈ R

d and n ≥ 1,

(A.1) n
(
f̂n(x) − f(x)

)
= Mn(x) + Rn(x)

with

Mn(x) =

n∑
i=1

(Ki (Xi − x∗
i − x) − E [Ki (Xi − x∗

i − x) |Fi−1]) ,(A.2)

Rn(x) =

n∑
i=1

E [Ki (Xi − x∗
i − x) |Fi−1] − n f(x),(A.3)

where, for all y ∈ R
d, Kn(y) = h−d

n K(h−1
n y) and Fn denotes the σ-algebra of the

events occuring up to time n. The almost sure properties of (Mn) are given by the
two following lemmas.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GOODNESS OF FIT TEST IN ADAPTIVE TRACKING 2451

Lemma A.1. Assume that nhd
n tends to infinity faster than (log n)2. Then, for

any x ∈ R
d, we have Mn(x) = o(n) a.s. More precisely,

(A.4) lim sup
n→∞

|Mn(x)|√
2τ2 ‖f ‖∞ nh−d

n log log n
≤ 1 a.s.

Proof. For any x ∈ R
d, (Mn(x)) is a square integrable real martingale. In

addition, its increasing process (〈M(x)〉n) satisfies 〈M(x)〉n = O(nh−d
n ). As a matter

of fact, for all x ∈ R
d,

〈M(x)〉n =

n∑
i=1

E
[
K2

i (Xi − x∗
i − x) |Fi−1

]
−

n∑
i=1

(E [Ki (Xi − x∗
i − x) |Fi−1])

2
.

Consequently, we deduce from (1.4) that for all x ∈ R
d

(A.5) 〈M(x)〉n ≤
n∑

i=1

h−2d
i

∫
Rd

K2
(
h−1
i (πi−1 + s− x)

)
f(s) ds.

Via the change of variables t = h−1
i (πi−1 + s− x) into (A.5), we find that

〈M(x)〉n ≤
n∑

i=1

h−d
i

∫
Rd

K2(t)f(hit + x− πi−1) dt ≤ τ2 ‖f ‖∞
n∑

i=1

h−d
i .

Therefore, as (hn) is decreasing, 〈M(x)〉n = O(nh−d
n ). Hence, it follows from the

strong law of large numbers for martingales (see, e.g., [12], Theorem 1.3.15, p. 20)
that for all γ > 0,

|Mn(x)|2 = o
(
nh−d

n (log n)1+γ
)

a.s.,

which ensures that Mn(x) = o(n) a.s. since nhd
n tends to infinity faster than (logn)2.

Furthermore, for any x ∈ R
d, |Mn(x) −Mn−1(x)| ≤ 2h−d

n ‖K‖∞ which clearly implies
that

|Mn(x) −Mn−1(x)| ≤ Cn

√
nh−d

n

log log n
,

where (Cn) is a deterministic sequence which tends to zero. Finally, we immediately
obtain (A.4) from the upper bound in the law of iterated logarithm for martingales
(see, e.g., [12], Theorem 6.4.24, p. 209).

Lemma A.2. Assume that the kernel K is Lipschitz and that the bandwidth (hn)
is given by hn = n−α with α ∈]0, 1/d[. Then, for any constants A > 0 and γ > 0, we
have the expanded uniform strong law

(A.6) sup
‖x‖≤Anγ

|Mn(x)| = o
(
nβ

)
a.s.,

where β ∈](1 + αd)/2, 1[.
Proof. Result (A.6) follows from the expanded uniform strong law for martingales

given by Theorem 6.4.34, p. 220 of [12]. First of all, for all x ∈ R
d, set ΔMn(x) =

Mn(x) −Mn−1(x). We already saw in the proof of Lemma A.1 that there exists two
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positive constants a, b such that, for all n ≥ 1, 〈M(0)〉n ≤ an1+αd and |ΔMn(0)| ≤
bnαd. In addition, since the kernel K is bounded and Lipschitz, for all δ ∈]0 , 1[, one
can find some positive constant Cδ such that, for any x, y ∈ R

d

(A.7) |K(x) −K(y)| ≤ Cδ ‖x− y‖δ .

Hence, for any x, y ∈ R
d, we can derive that

|ΔMn(x) − ΔMn(y)| ≤ 2Cδ ‖x− y‖δ nα(d+δ).

Furthermore, similarly to (A.5), we have for any x, y ∈ R
d

〈M(x) −M(y)〉n ≤
n∑

i=1

i2αd
∫

Rd

(
K (iα(πi−1+s−x))−K (iα(πi−1+s−y))

)2

f(s) ds,

which, by the change of variables t = iα(πi−1 + s− x), leads to

(A.8) 〈M(x) −M(y)〉n ≤‖f ‖∞
n∑

i=1

iαd
∫

Rd

(K(t) −K(t + iα(x− y)))
2
dt.

In addition, as K is a density function, it follows from (A.7) that∫
Rd

(K(t) −K(t + iα(x− y)))
2
dt ≤ 2C2δ ‖x− y‖2δ i2αδ.

Therefore, we deduce from (A.8) that for any x, y ∈ R
d

〈M(x) −M(y)〉n ≤ 2C2δ ‖x− y‖2δ n1+αd+2αδ.

Since the power δ can be chosen as small as one wishes, all four conditions of Theo-
rem 6.4.34 of [12] are fullfilled which leads to Lemma A.2.

Proof of Theorem 2.1. In order to prove Theorem 2.1, it remains to study the
almost sure asymptotic behavior of the remainder Rn(x) in (A.1). It follows from
(A.3) that

Rn(x) =

n∑
i=1

h−d
i

∫
Rd

K
(
h−1
i (πi−1 + s− x)

)
f(s) ds− nf(x),

=

n∑
i=1

∫
Rd

K(t) (f (hit + x− πi−1) − f(x)) dt,

via the change of variables t = h−1
i (πi−1 + s − x). As the density function f is

differentiable with a bounded gradient, we obtain by a Taylor expansion that

sup
x∈Rd

|Rn(x)| = O

(
n∑

i=1

hi

)
+ O

(
n∑

i=1

‖πi−1 ‖
)

a.s.

Moreover, since (εn) has a finite moment of order a > 2, we deduce from [A1] and
[A2] together with Theorem 1 of [13] that

(A.9)
n∑

i=1

‖πi−1 ‖2= O
(
nb

)
a.s.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GOODNESS OF FIT TEST IN ADAPTIVE TRACKING 2453

for all b ∈]2/a, 1[. Hence, it follows from (A.9) together with the Cauchy–Schwarz
inequality that

(A.10) sup
x∈Rd

|Rn(x)| = O (nhn) + O
(√

n1+b
)

a.s.

Consequently, Rn(x) = o(n) a.s., which ensures that f̂n(x) converges a.s. to f(x).
Moreover, we obtain (2.1) from the conjunction of Lemma A.1 and result (A.10). The
uniform, almost sure convergence on R

d still remains to be proven. Hereafter, we take
hn = n−α with α ∈]0, 1/d[. On the one hand, we find from Lemma A.2 with A = 2
and γ = 1/2, that

(A.11) sup
‖x‖≤2

√
n

|Mn(x)| = o
(
nβ

)
a.s.,

where β ∈](1+αd)/2, 1[. From now on, we choose β ∈](1+c)/2, 1[ with c = max(b, αd).
Since β > (1 + b)/2, it implies that n1+b = o(n2β). Hence, it follows from the
conjunction of (A.10) and (A.11) that

(A.12) sup
‖x‖≤2

√
n

∣∣∣f̂n(x) − f(x)
∣∣∣ = O

(
n−α

)
+ o

(
nβ−1

)
a.s.

On the other hand, we claim that

(A.13) sup
‖x‖>2

√
n

∣∣∣f̂n(x) − f(x)
∣∣∣ = O

(
1

n

)
a.s.

As a matter of fact, since (εn) has a finite moment of order a > 2, we infer from
Lemma 2 of [13] that ‖Xn ‖2= O

(
nb

)
a.s. for some b ∈]2/a, 1[, which implies that

sup
i≤n

‖Xi − x∗
i ‖2= o (n) a.s.

Hence, for n large enough, ‖Xi − x∗
i ‖<

√
n a.s., which ensures that, for x such that

‖x‖> 2
√
n, ‖Xi − x∗

i − x‖>
√
n a.s. Therefore, since K is compactly supported, it

clearly leads to

(A.14) sup
‖x‖>2

√
n

∣∣∣nf̂n(x)
∣∣∣ = sup

‖x‖>2
√
n

∣∣∣∣∣
n∑

i=1

Ki (Xi − x∗
i − x)

∣∣∣∣∣ = O (1) a.s.

In addition, since (εn) has a finite moment of order a > 2 and f is positive, it follows
that f(x) = O(‖x‖−3) for large values of x, leading to

(A.15) sup
‖x‖>2

√
n

f(x) = O

(
1

n

)
.

Consequently, we obtain (A.13) from (A.14) and (A.15). Finally, we deduce (2.2)
from (A.12) and (A.13), which completes the proof of Theorem 2.1.

Appendix B. This appendix is concerned with the proof of Theorem 2.2. We
first propose a CLT for the martingale (Mn).
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Lemma B.1. Assume that [A1] to [A3] hold and suppose that (εn) has a finite
moment of order a > 2. Moreover, assume that the bandwidth (hn) shares the same
assumptions as in Theorem 2.2. Then, for any x ∈ R

d,

(B.1)
Mn(x)√
nh−d

n

L−→ N
(
0 , τ2
hf(x)

)
.

Proof. In order to prove Lemma B.1, it is necessary to study the asymptotic
behavior of the increasing process 〈M(x)〉n properly normalized. For all i ≥ 1 and
x ∈ R

d, we have

E [Ki (Xi − x∗
i − x) |Fi−1] = h−d

i

∫
Rd

K
(
h−1
i (πi−1 + s− x)

)
f(s) ds,

=

∫
Rd

K(t) f (hit + x− πi−1) dt ≤‖f ‖∞,

which implies that

(B.2)

n∑
i=1

(E [Ki (Xi − x∗
i − x) |Fi−1])

2
= O(n) a.s.

Moreover, we also have

E
[
K2

i (Xi − x∗
i − x) |Fi−1

]
= h−2d

i

∫
Rd

K2
(
h−1
i (πi−1 + s− x)

)
f(s) ds

= h−d
i

∫
Rd

K2(t) f (hit + x− πi−1) dt.

Consequently, we obtain the decomposition

n∑
i=1

E
[
K2

i (Xi − x∗
i − x) |Fi−1

]
= An + τ2Bn + τ2f(x)Cn,

where

An =

n∑
i=1

h−d
i

∫
Rd

K2(t) (f (hit + x− πi−1) − f (x− πi−1)) dt,

Bn =

n∑
i=1

h−d
i (f (x− πi−1) − f(x)) ,

Cn =

n∑
i=1

h−d
i .

As the gradient of f is bounded, we clearly have |An| = O(nh1−d
n ) a.s. and

|Bn| = O

(
n∑

i=1

h−d
i ‖πi−1 ‖

)
a.s.

Hence, it follows from (A.9) that

|Bn| = O
(
h−d
n

√
n1+b

)
a.s.
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for all b ∈]2/a, 1[. Furthermore, we immediately get from (2.6) that n−1hd
nCn con-

verges to 
h as n goes to infinity. Putting together those three contributions, we find
that

(B.3) lim
n→∞

hd
n

n
〈M(x)〉n = τ2
h f(x) a.s.

In order to make use of the CLT for martingales (see, e.g., [12], Corollary 2.1.10,
p. 46), it remains to check that Lindeberg’s condition is satisfied. For all a > 0 and
x ∈ R

d, let

Λn(a, x) =
hd
n

n

n∑
i=1

E

[
|ΔMi(x)|2 1I(

|ΔMi(x)|≥a
√

nh−d
n

)|Fi−1

]
.

We already saw that for all i ≤ n, |ΔMi(x)| ≤ 2h−d
n ‖K ‖∞. Hence, we clearly have

for all i ≤ n

1I(
|ΔMi(x)|≥a

√
nh−d

n

) ≤ 1I(
2‖K‖∞≥a

√
nhd

n

).
Consequently, we find that for all a > 0 and x ∈ R

d,

Λn(a, x) ≤ hd
n

n
1I(

2‖K‖∞≥a
√

nhd
n

) n∑
i=1

E

[
|ΔMi(x)|2 |Fi−1

]
,

≤ hd
n

n
1I(

2‖K‖∞≥a
√

nhd
n

)τ2 ‖f ‖∞
n∑

i=1

h−d
i ,

≤ τ2 ‖f ‖∞ 1I(
2‖K‖∞≥a

√
nhd

n

).
Therefore, as nhd

n tends to infinity, we can deduce that, for all a > 0 and x ∈ R
d,

Λn(a, x) tends to zero a.s. Finally, Lindeberg’s condition is satisfied, which achieves
the proof of Lemma B.1.

Proof of Theorem 2.2. We are now in position to prove Theorem 2.2. It follows
from (A.1) that for any x ∈ R

d

(B.4)
√

nhd
n

(
f̂n(x) − f(x)

)
=

Mn(x) + Rn(x)√
nh−d

n

.

Consequently, (2.7) immediately follows from (A.10) together with (B.1) and (B.4)
as soon as max(nhd+2

n , nbhd
n) = o(1). The multivariate CLT remains to be proven.

Taking the previous results into account, it is enough to prove that for two distinct
points x, y ∈ R

d, the random vector

1√
nh−d

n

(
Mn(x)
Mn(y)

) L−→
(

G(x)
G(y)

)
,

where G(x) and G(y) are two independent Gaussian random variables. We can easily
show this convergence by remarking that for two distinct points x, y ∈ R

d

(B.5) lim
n→∞

hd
n

n

n∑
i=1

E [ΔMi(x)ΔMi(y)|Fi−1] = 0 a.s.
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Indeed, for all i ≥ 1, we have

E [ΔMi(x)ΔMi(y)|Fi−1] ≤ E [Ki (Xi − xi − x)Ki (Xi − xi − y) |Fi−1] ,

≤ E [Ki (πi−1 + εi − x)Ki (πi−1 + εi − y) |Fi−1] ,

which implies that

E [ΔMi(x)ΔMi(y)|Fi−1] ≤ h−d
i

∫
Rd

K(t)K
(
t + h−1

i (x− y)
)
f (hit + x− πi−1) dt.

Therefore, as the gradient of f is bounded, we obtain from (A.9) that

n∑
i=1

E [ΔMi(x)ΔMi(y)|Fi−1] ≤ Hn(x, y) + O
(
nh1−d

n

)
+ O

(
h−d
n

√
n1+b

)
a.s.

for all b ∈]2/a, 1[, where

Hn(x, y) =

n∑
i=1

h−d
i f(x)

∫
Rd

K(t)K(t + h−1
i (x− y))dt.

However, using the fact that K is compactly supported, we can deduce that for i large
enough, the integral at the right-hand side of Hn(x, y) is zero. Finally, we obtain that
convergence (B.5) is satisfied, which completes the proof of Theorem 2.2.

Remark 7. Result (B.5) ensures the asymptotic independence of the random vari-
ables Gn(x1), . . . , Gn(xN ) in the multivariate CLT. Since the kernel K is compactly
supported, for finite values of n, the left-hand side of (B.5) can be very small if we
choose two points x and y sufficiently distant. This last point clarifies the design
points selection rule described in section 4.
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