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a b s t r a c t

We investigate the asymptotic behavior of the maximum likelihood estimators of the un-
known parameters of positive recurrent Ornstein–Uhlenbeck processes driven by Orn-
stein–Uhlenbeck processes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Since the seminalwork of Uhlenbeck andOrnstein (1930), awide literature is available onOrnstein–Uhlenbeck processes
driven by Brownian or fractional Brownian motions (Kutoyants, 2004; Liptser and Shiryaev, 2001). Many interesting papers
are also available on Ornstein–Uhlenbeck processes driven by Lévy processes

dXt = θXtdt + dLt (1.1)

where θ < 0 and (Lt) is a continuous-time stochastic process starting from zero with stationary and independent incre-
ments. We refer the reader to Barndorff-Nielsen and Shephard (2001) for the mathematical foundation on Orn-
stein–Uhlenbeck processes driven by Lévy processes. Some recent extension on Ornstein–Uhlenbeck processes driven by
fractional Lévy processes may be found in Barndorff-Nielsen and Basse-O’Connor (2011). More complex diffusions in which
the volatility is itself given by an Ornstein–Uhlenbeck process are also available in Barndorff-Nielsen and Veraart (2013),
whereas some continuous-time analogues of discrete-time ARMAmodels, based on general Ornstein–Uhlenbeck processes,
can be found in Brockwell and Lindner (2012). Parametric estimation results for Ornstein–Uhlenbeck driven byα-stable Lévy
processes are established in Hu and Long (2007) while nonparametric estimation results are given in Jongbloed et al. (2005).
Two interesting applications related tomoney exchange rates and stock pricesmay be found in Barndorff-Nielsen and Shep-
hard (2001) and Onalan (2009); see also the references therein. In short, actual research studies tend to treat volatility as
more andmore elaborate diffusions. We intend to transpose all correlation phenomena in the driving process, to lighten the
investigation and conserve homoscedasticity.
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To the best of our knowledge, no results are available on Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes
defined, over the time interval [0, T ], bydXt = θXtdt + dVt

dVt = ρVtdt + dWt
(1.2)

where θ < 0, ρ ≤ 0 and (Wt) is a standard Brownian motion. For the sake of simplicity, we choose the initial values X0 = 0
and V0 = 0.

Our motivation for studying (1.2) comes from two observations. On the one hand, Ornstein–Uhlenbeck driven by
Ornstein–Uhlenbeck processes are clearly related to stochastic volatilitymodels in financialmathematics (Barndorff-Nielsen
and Veraart, 2013; Schoutens, 2000). On the other hand, (1.2) can be seen as a continuous-time version of the first-order
stable autoregressive process driven by a first-order autoregressive process recently investigated in Bercu and Proïa (2013)
and Proïa, 2013, such as Brockwell and Lindner (2012) does for ARMA processes. It could be interesting, as a future study, to
compare the efficiency of our approach with dynamic volatility models on real financial data.

The paper is organized as follows. Section 2 is devoted to the maximum likelihood estimation for θ and ρ. A continuous-
time equivalent of the Durbin–Watson statistic is also provided. In Section 3, we establish the almost sure convergence
as well as the asymptotic normality of our estimates. One shall realize that there is a radically different behavior of the
estimator of ρ in the two situations where ρ < 0 and ρ = 0. Our analysis relies on technical tools postponed to Section 4.

2. Maximum likelihood estimation

The maximum likelihood estimator of θ is given by

θT =

 T
0 XtdXt T
0 X2

t dt
=

X2
T − T

2
 T
0 X2

t dt
. (2.1)

In the standard situation where ρ = 0, it is well-known thatθT converges to θ almost surely. Moreover, as θ < 0, the
process (XT ) is positive recurrent and we have the asymptotic normality

√
T
θT − θ


L

−→ N (0, −2θ).

We shall see in Section 3 that the almost sure limiting value ofθT and its asymptotic variance will change as soon as ρ < 0.
The estimation of ρ requires the evaluation of the residuals generated by the estimation of θ at stage T . For all 0 ≤ t ≤ T ,
denoteVt = Xt −θTΣt (2.2)

where

Σt =

 t

0
Xsds. (2.3)

By analogy with (2.1) and on the basis of the residuals (2.2), we estimate ρ by

ρT =

V 2
T − T

2
 T
0
V 2
t dt

. (2.4)

Therefore, we are in the position to define the continuous-time equivalent of the discrete-time Durbin–Watson statistic
(Bercu and Proïa, 2013; Durbin and Watson, 1950, 1951, 1971),

DT =
2
 T
0
V 2
t dt −V 2

T + T T
0
V 2
t dt

= 2(1 −ρT ). (2.5)

3. Main results

The almost sure convergences of our estimates are as follows.

Theorem 3.1. We have the almost sure convergences

lim
T→ ∞

θT = θ∗, lim
T→ ∞

ρT = ρ∗ a.s. (3.1)

where

θ∗
= θ + ρ and ρ∗

=
θρ(θ + ρ)

(θ + ρ)2 + θρ
. (3.2)
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Proof. We immediately deduce from (1.2) that T

0
XtdXt = θST + ρPT + MX

T (3.3)

where

ST =

 T

0
X 2
t dt, PT =

 T

0
XtVtdt, MX

T =

 T

0
XtdWt . (3.4)

We shall see in Corollary 4.1 below that

lim
T→ ∞

1
T
ST = −

1
2(θ + ρ)

a.s. (3.5)

and in the proof of Corollary 4.2 that

lim
T→ ∞

1
T
PT = −

1
2(θ + ρ)

a.s. (3.6)

Moreover, if (Ft) stands for the natural filtration of the standard Brownian motion (Wt), then (MX
t ) is a continuous-time

(Ft)-martingale with the quadratic variation St . Hence, it follows from the strong law of large numbers for continuous-time
martingales given e.g. in Feigin (1976) or Lépingle (1978), thatMX

T = o(T ) a.s. Consequently, we obtain from (3.3) that

lim
T→∞

1
T

 T

0
XtdXt = −

θ

2(θ + ρ)
−

ρ

2(θ + ρ)
= −

1
2

a.s. (3.7)

which leads, via (2.1), to the first convergence in (3.1). The second convergence in (3.1) is more difficult to handle. We infer
from (1.2) that T

0
VtdVt = ρΛT + MV

T (3.8)

where

ΛT =

 T

0
V 2
t dt and MV

T =

 T

0
VtdWt . (3.9)

On the one hand, if ρ < 0, it is well-known (see e.g. Feigin (1976), page 728) that

lim
T→ ∞

1
T

ΛT = −
1
2ρ

a.s. (3.10)

In addition, (MV
t ) is a continuous-time (Ft)-martingale with the quadratic variation Λt . Consequently, MV

T = o(T ) a.s. and
we find from (3.8) that

lim
T→∞

1
T

 T

0
VtdVt = −

1
2

a.s. (3.11)

However, we know from Itô’s formula that

1
T

 T

0
XtdXt =

1
2


X 2
T

T
− 1


and

1
T

 T

0
VtdVt =

1
2


V 2
T

T
− 1


.

Then, we deduce from (3.7) and (3.11) that

lim
T→∞

X 2
T

T
= 0 and lim

T→∞

V 2
T

T
= 0 a.s. (3.12)

As XT = θΣT + VT , it clearly follows from (2.2) and (3.12) that

lim
T→∞

1
2

V 2
T

T
− 1


= −

1
2

a.s. (3.13)

Hereafter, we have from (2.4) the decomposition

ρT =
T

2ΛT

V 2
T

T
− 1


(3.14)
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where

ΛT =

 T

0

V 2
t dt.

We shall see in Corollary 4.2 below that

lim
T→ ∞

1
T
ΛT = −

1
2ρ∗

a.s. (3.15)

Therefore, (3.14) together with (3.13) and (3.15) directly implies (3.1). On the other hand, if ρ = 0, it is clear from (1.2) that
for all t ≥ 0, Vt = Wt . Hence, we have from (2.2) and Itô’s formula thatV 2

T − T = 2MW
T − 2WTΣT (θT − θ) + Σ2

T (
θT − θ)2 (3.16)

and

ΛT = ΛT − 2(θT − θ)

 T

0
WtΣtdt + (θT − θ)2

 T

0
Σ2

t dt (3.17)

where

ΛT =

 T

0
W 2

t dt and MW
T =

 T

0
WtdWt .

It is now necessary to investigate the almost sure asymptotic behavior of ΛT . We deduce from the self-similarity of the
Brownian motion (Wt) that

ΛT =

 T

0
W 2

t dt L
= T

 T

0
W 2

t/Tdt = T 2
 1

0
W 2

s ds = T 2Λ1. (3.18)

Consequently, it clearly follows from (3.18) that for any power 0 < a < 2,

lim
T→ ∞

1
T a

ΛT = +∞ a.s. (3.19)

As a matter of fact, since Λ1 is almost surely positive, it is enough to show that

lim
T→ ∞

E

exp


−

1
T a

ΛT


= 0. (3.20)

However, we have from standard Gaussian calculations (see e.g. Liptser and Shiryaev (2001), page 232) that

E

exp


−

1
T a

ΛT


= E


exp


−

T 2

T a
Λ1


=

1
√
cosh(vT (a))

where vT (a) =
√
2T 2−a goes to infinity, which clearly leads to (3.20). Furthermore, (MW

t ) is a continuous-time (Ft)-
martingale with the quadratic variation Λt . We already saw that ΛT which implies that MW

T = o(ΛT ) a.s. In addition,
we obviously have Σ2

T ≤ TST . One can observe that convergence (3.5) still holds when ρ = 0, which ensures that Σ2
T ≤ T 2

a.s. Moreover, we deduce from the strong law of large numbers for continuous-time martingales that

(θT − θ)2 = O

log T
T


a.s.

which implies that Σ2
T (
θT − θ)2 = O(T log T ) = o(ΛT ) a.s. By the same token, as X2

T = o(T ) and W 2
T = o(T log T ) a.s., we

find that

WTΣT (θT − θ) = o(ΛT ) a.s.

Consequently, we obtain from (3.16) thatV 2
T − T = o(ΛT ) a.s. (3.21)

It remains to study the almost sure asymptotic behavior of ΛT . One can easily see that T

0
Σ2

t dt ≤
2
θ2

(ST + ΛT ).
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However, it follows from (3.5) and (3.19) that ST = o(ΛT ) a.s. which ensures that

(θT − θ)2
 T

0
Σ2

t dt = o(ΛT ) a.s. (3.22)

Via the same arguments,

(θT − θ)

 T

0
WtΣtdt = o(ΛT ) a.s. (3.23)

Then, we find from (3.17), (3.22) and (3.23) thatΛT = ΛT (1 + o(1)) a.s. (3.24)

Finally, the second convergence in (3.1) follows from (3.21) and (3.24), which achieves the proof of Theorem 3.1. �

Our second result deals with the asymptotic normality of our estimates.

Theorem 3.2. If ρ < 0, we have the joint asymptotic normality

√
T
θT − θ∗ρT − ρ∗


L

−→ N (0, Γ ) (3.25)

where the asymptotic covariance matrix is given by

Γ =


σ 2

θ ℓ

ℓ σ 2
ρ


(3.26)

with σ 2
θ = −2θ∗,

ℓ =
2ρ∗


(θ∗)2 − θρ


(θ∗)2 + θρ

and σ 2
ρ = −

2ρ∗

(θ∗)6 + θρ


(θ∗)4 − θρ


2(θ∗)2 − θρ


(θ∗)2 + θρ

3 .

In particular, we have
√
T
θT − θ∗

 L
−→ N (0, σ 2

θ ) (3.27)

and
√
T
ρT − ρ∗

 L
−→ N (0, σ 2

ρ ). (3.28)

Proof. We obtain from (2.1) the decomposition

θT − θ∗
=

MX
T

ST
+

RX
T

ST
(3.29)

where

RX
T = ρ

 T

0
Xt(Vt − Xt)dt = −θρ

 T

0
ΣtdΣt = −

θρ

2
Σ 2

T .

We shall now establish a similar decomposition forρT − ρ∗. It follows from (2.2) that for all 0 ≤ t ≤ T ,Vt = Xt −θTΣt = Vt − (θT − θ)Σt = Vt − (θT − θ∗)Σt − ρΣt

= Vt −
ρ

θ
(Xt − Vt) −

1
θ
(θT − θ∗)(Xt − Vt) =

θ∗

θ
Vt −

ρ

θ
Xt −

1
θ
(θT − θ∗)(Xt − Vt),

which leads toΛT = IT + (θT − θ∗)

JT + (θT − θ∗)KT


, (3.30)

where

IT =
1
θ2


ρ2ST + (θ∗)2ΛT − 2θ∗ρPT


,

JT =
1
θ2


2ρST + 2θ∗ΛT − 2(θ + 2ρ)PT


,

KT =
1
θ2 (ST + ΛT − 2PT ) .
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Then, we deduce from (2.4) and (3.30) that

ΛT (ρT − ρ∗) =
IVT
2

+
1
2
(θT − θ∗)


JVT + (θT − θ∗)KV

T


(3.31)

inwhich IVT = V 2
T −T−2ρ∗IT , JVT = −2ρ∗JT , and KV

T = −2ρ∗KT . At this stage, in order to simplify the complicated expression
(3.31), we repeatedly make use of Itô’s formula. For all 0 ≤ t ≤ T , we have

Λt =
1
2ρ

V 2
t −

1
ρ
MV

t −
t
2ρ

,

Pt =
1
θ∗

XtVt −
1

2θ∗
V 2
t −

1
θ∗

MX
t −

t
2θ∗

,

St =
1
2θ

X 2
t +

ρ

2θ∗θ
V 2
t −

ρ

θ∗θ
XtVt −

1
θ∗

MX
t −

t
2θ∗

,

where the continuous-time martingales MX
t and MV

t were previously defined in (3.4) and (3.9). Therefore, it follows from
tedious but straightforward calculations that

ΛT (ρT − ρ∗) = CXMX
T + CVMV

T +
JVT
2

(θT − θ∗) + RV
T (3.32)

where

CV =
(θ∗)2ρ∗

θ2ρ
and CX = −

ρ(2θ + ρ)ρ∗

θ2θ∗
.

The remainder RV
T is similar to RX

T and they play a negligible role. The combination of (3.29) and (3.32) leads to the vectorial
expression

√
T
θT − θ∗ρT − ρ∗


=

1
√
T
ATZT +

√
TRT (3.33)

where

AT =


S−1
T T 0

BTΛ−1
T T CVΛ−1

T T


, RT =


S−1
T RX

TΛ−1
T DT


with BT = CX + JVT (2ST )−1 and DT = RV

T + JVT (2ST )−1RX
T . The leading term in (3.33) is the continuous-time vector (Ft)-

martingale (Zt) with the predictable quadratic variation ⟨Z⟩t given by

Zt =


MX

t

MV
t


and ⟨Z⟩t =


St Pt
Pt Λt


.

We deduce from (3.5), (3.6) and (3.10) that

lim
T→ ∞

AT = A a.s. (3.34)

where A is the limiting matrix given by

A =


−2θ∗ 0

−2ρ∗(CX − 2(θρ)−1θ∗ρ∗) −2ρ∗CV


.

By the same token, we immediately have from (3.5), (3.6) and (3.10) that

lim
T→ ∞

⟨Z⟩T

T
= ∆ = −

1
2θ∗


1 1

1 θ∗ρ−1


a.s. (3.35)

Furthermore, it clearly follows from Corollary 4.3 below that

X 2
T

√
T

P
−→ 0 and

V 2
T

√
T

P
−→ 0. (3.36)

Finally, as Γ = A∆A′, the joint asymptotic normality (3.25) follows from the conjunction of (3.33)–(3.36) together with
Slutsky’s lemma and the central limit theorem for continuous-time vector martingales given e.g. in Feigin (1976), which
achieves the proof of Theorem 3.2. �
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Theorem 3.3. If ρ = 0, we have the convergence in distribution

TρT
L

−→ W (3.37)

where the limiting distribution W is given by

W =

 1
0 BsdBs 1
0 B 2

s ds
=

B2
1 − 1

2
 1
0 B2

s ds
(3.38)

and (Bt) is a standard Brownian motion.
Proof. Via the same reasoning as in Section 2 of Feigin (1979), it follows from the self-similarity of the Brownian motion
(Wt) that T

0
W 2

t dt,
1
2


W 2

T − T
 L

=


T
 T

0
W 2

t/Tdt,
T
2


W 2

1 − 1


=


T 2
 1

0
W 2

s ds,
T
2


W 2

1 − 1


. (3.39)

Moreover, we obtain from (3.30) thatΛT = αT ST + βTPT + γTΛT (3.40)

where

αT =
1
θ2

(θT − θ)2,

βT = −
2
θ

(θT − θ) −
2
θ2

(θT − θ)2,

γT = 1 +
2
θ

(θT − θ) +
1
θ2

(θT − θ)2.

By Theorem 3.1,θT converges almost surely to θ which implies that αT , βT , and γT converge almost surely to 0, 0 and 1.
Hence, we deduce from (3.5), (3.6) and (3.40) thatΛT = ΛT (1 + o(1)) a.s. (3.41)

Furthermore, one can observe thatV 2
T /T shares the same asymptotic distribution asW 2

T /T . Finally, (3.37) follows from (3.39)
and (3.41) together with the continuous mapping theorem. �

Remark 3.1. The asymptotic behavior ofρT whenρ < 0 andρ = 0 is closely related to the results previously established for
the unstable discrete-time autoregressive process (Chan and Wei, 1988; Feigin, 1979; White, 1958). According to Corollary
3.1.3 of Chan and Wei (1988), we can express

W =
T 2

− 1
2S

where T and S are given by the Karhunen–Loeve expansions

T =
√
2

∞
n=1

γnZn and S =

∞
n=1

γ 2
n Z 2

n

with γn = 2(−1)n/((2n − 1)π) and (Zn) being a sequence of independent random variables with N (0, 1) distribution.

Remark 3.2. It immediately follows from our previous results thatDT converges almost surely to D∗
= 2 (1 − ρ∗). In addi-

tion, if ρ < 0, we have the asymptotic normality
√
T
DT − D∗

 L
−→ N (0, σ 2

D )

where σ 2
D = 4 σ 2

ρ whereas, if ρ = 0,

T
DT − 2

 L
−→ −2W .

4. Some technical tools

First of all, most of our results rely on the following keystone lemma.
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Lemma 4.1. The process (Xt) is geometrically ergodic.

Proof. It follows from (1.2) that

dXt = (θ + ρ)Xtdt − θρΣtdt + dWt (4.1)

where we recall that

Σt =

 t

0
Xsds.

Consequently, if

Φt =


Xt

Σt


,

we clearly deduce from (4.1) that

dΦt = AΦtdt + dBt

where

A =


θ + ρ −θρ

1 0


and Bt =


Wt
0


.

The geometric ergodicity of (Φt) only depends on the sign of λmax(A), i.e. the largest eigenvalue of A, which has to be
negative. An immediate calculation shows that

λmax(A) = max(θ, ρ)

which ensures that λmax(A) < 0 as soon as ρ < 0. Moreover, if ρ = 0, (Xt) is an ergodic Ornstein–Uhlenbeck process since
θ < 0, which completes the proof of Lemma 4.1. �

Corollary 4.1. We have the almost sure convergence

lim
T→ ∞

1
T
ST = −

1
2(θ + ρ)

a.s. (4.2)

Proof. According to Lemma 4.1, it is necessary to establish the asymptotic behavior of E[X 2
t ]. Denote αt = E[X 2

t ], βt =

E[Σ 2
t ] and γt = E[XtΣt ]. One obtains from Itô’s formula that

∂Ut

∂t
= CUt + I

where

Ut =


αt
βt
γt


, C =

2(θ + ρ) 0 −2θρ
0 0 2
1 −θρ θ + ρ


, I =

1
0
0


.

It is not hard to see that λmax(C) = max(θ + ρ, 2θ, 2ρ). On the one hand, if ρ < 0, λmax(C) < 0 which implies that

lim
t→ ∞

Ut = −C−1I.

It means that

lim
t→ ∞

αt = −
1

2(θ + ρ)
, lim

t→ ∞
βt = −

1
2θρ(θ + ρ)

, lim
t→ ∞

γt = 0.

Hence, (4.2) follows from Lemma 4.1 together with the ergodic theorem. On the other hand, if ρ = 0, (Xt) is a positive
recurrent Ornstein–Uhlenbeck process and convergence (4.2) is well-known. �

Corollary 4.2. If ρ < 0, we have the almost sure convergence

lim
T→ ∞

1
T
ΛT = −

(θ + ρ)2 + θρ

2θρ(θ + ρ)
a.s.

Proof. If ρ < 0, (Vt) is a positive recurrent Ornstein–Uhlenbeck process and it is well-known that

lim
T→ ∞

1
T

ΛT = −
1
2ρ

a.s.
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In addition, as Xt = θΣt + Vt , T

0
XtΣtdt =

1
θ
(ST − PT ).

However, we already saw in the proof of Corollary 4.1 that

lim
T→ ∞

1
T

 T

0
XtΣtdt = 0 a.s.

which leads, via (4.2), to the almost sure convergence

lim
T→ ∞

PT
T

= −
1

2(θ + ρ)
a.s.

Consequently, we deduce from (3.1) together with (3.30) that

lim
T→∞

1
T
ΛT = lim

T→∞

1
T
IT = −

(θ + ρ)2 + θρ

2θρ(θ + ρ)
a.s.

which achieves the proof of Corollary 4.2. �

Corollary 4.3. If ρ < 0, we have the asymptotic normalities

XT
L

−→ N


0, −

1
2(θ + ρ)


and VT

L
−→ N


0, −

1
2ρ


.

The asymptotic normality of XT still holds in the particular case where ρ = 0.

Proof. This asymptotic normality is a well-known result for the Ornstein–Uhlenbeck process (Vt) with ρ < 0. In addition,
one can observe that for all t ≥ 0, E[Xt ] = 0. The end of the proof is a direct consequence of the Gaussianity of (Xt) together
with Lemma 4.1 and Corollary 4.1. �
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