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SUMMARY

A wide literature is available on the asymptotic behavior of the Durbin–Watson statistic for autoregres-
sive models. However, it is impossible to find results on the Durbin–Watson statistic for autoregressive
models with adaptive control. Our purpose is to fill the gap by establishing the asymptotic behavior of the
Durbin–Watson statistic for ARX models in adaptive tracking. On the one hand, we show the almost sure
convergence as well as the asymptotic normality of the least squares estimators of the unknown parameters of
the ARX models. On the other hand, we establish the almost sure convergence of the Durbin–Watson statistic
and its asymptotic normality. Finally, we propose a bilateral statistical test for residual autocorrelation in
adaptive tracking. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

The Durbin–Watson statistic was introduced in the pioneer works of Durbin and Watson [1–3], in
order to detect the presence of a first-order autocorrelated driven noise in linear regression mod-
els. A wide literature is available on the asymptotic behavior of the Durbin–Watson statistic for
linear regression models, and it is well-known that the statistical test based on the Durbin–Watson
statistic performs pretty well when the regressors are independent random variables. However, as
soon as the regressors are lagged dependent variables, which is of course the most attractive case,
its widespread use in inappropriate situations may lead to bad conclusions. More precisely, it was
observed by Malinvaud [4] and Nerlove and Wallis [5] that the Durbin–Watson statistic may be
asymptotically biased if the model itself and the driven noise are governed by first-order autoregres-
sive processes. In order to prevent this misuse, Durbin [6] proposed a redesigned alternative test in
the particular case of the first-order autoregressive process previously investigated in [4, 5]. More
recently, Stocker [7] provided substantial improvements in the study of the asymptotic behavior of
the Durbin–Watson statistic resulting from the presence of a first-order autocorrelated noise. We
also refer the reader to Bercu and Proïa [8] for a recent sharp analysis on the asymptotic behavior
of the Durbin–Watson statistic via a martingale approach, see also Proïa [9] for an extension to the
multivariate case.
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As far as the authors know, there are no results available on the Durbin–Watson statistic for autore-
gressive models with exogenous control such as ARX.p, q/ processes. One can observe that these
models are widely used in many areas related to applied mathematics such as financial mathematics
[10], robotics [11], engineering [12], medical physics [13], and neuroscience [14]. However, for
these models, we do not yet have a tool for analyzing the non-correlation of the residuals, which is a
crucial step in model validation. This is the reason why we have chosen to investigate the asymptotic
behavior of the Durbin–Watson statistic for ARX processes in order to decide whether or not the
residuals are autocorrelated. We shall focus our attention on the ARX.p, 1/ process, given for all
n> 0, by

XnC1 D

pX
kD1

�kXn�kC1CUnC "nC1 (1.1)

where the driven noise ."n/ is given by the first-order autoregressive process

"nC1 D �"nC VnC1. (1.2)

We assume that the serial autocorrelation parameter satisfies j�j < 1, and the initial values X0, "0
and U0 may be arbitrarily chosen. In all the sequel, we also assume that .Vn/ is a martingale differ-
ence sequence adapted to the filtration F D .Fn/ where Fn stands for the � -algebra of the events
occurring up to time n. Moreover, we suppose that, for all n > 0, E

�
V 2nC1jFn

�
D �2 a.s. with

�2 > 0. Denote by � the unknown parameter of (1.1)

� t D .�1, �2, : : : , �p/.

Our goal is to deal simultaneously with three objectives. The first one is to propose an efficient
procedure in order to estimate the unknown parameters � and � of the ARX.p, 1/ process given by
(1.1) and (1.2). The second one is to regulate the dynamic of the process .Xn/ by forcingXn to track
step by step a predictable reference trajectory .xn/. This second objective can be achieved by use of
an appropriate version of the adaptive tracking control proposed by Aström and Wittenmark [15].
Finally, our last objective is to establish the asymptotic properties of the Durbin–Watson statistic in
order to propose a bilateral test on the serial parameter �.

The paper is organized as follows. Section 2 is devoted to the parameter estimation procedure
and the suitable choice of stochastic adaptive control. In Section 3, we establish the almost sure
convergence of the least squares estimators of � and �. The asymptotic normality of our estimates
are given in Section 4. In Section 5, we shall be able to prove the almost sure convergence of the
Durbin–Watson statistic as well as its asymptotic normality, which will lead us to propose a bilateral
statistical test for residual autocorrelation. Some numerical simulations are provided in Section 6.
Finally, all technical proofs are postponed in the Appendices.

2. ESTIMATION AND ADAPTIVE CONTROL

Relation (1.1) can be rewritten as

XnC1 D �
t'nCUnC "nC1 (2.1)

where the regression vector

'tn D .Xn, : : : ,Xn�pC1/.

A naive strategy to regulate the dynamic of the process .Xn/ is to make use of the Aström–
Wittenmark [15] adaptive tracking control

Un D xnC1 � O�
t
n'n

where O�n stands for the least squares estimator of � . However, it is known that this strategy leads to
biased estimation of � and �. This is due to the fact that ."n/ is not a white noise but the first-order
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autoregressive process given by (1.2). Consequently, it is necessary to adopt a more appropriate
strategy, which means a more suitable choice for the adaptive control Un in (2.1).

The construction of our control law is as follows. Starting from (1.1) together with (1.2), we can
remark that the process .Xn/ satisfies the ARX.pC 1, 2/ equation given, for all n> 1, by

XnC1 D .�1C �/XnC .�2 � ��1/Xn�1C � � � C .�p � ��p�1/Xn�pC1

� ��pXn�p CUn � �Un�1C VnC1 (2.2)

which can be rewritten as

XnC1 D #
tˆnCUnC VnC1 (2.3)

where the new parameter # 2RpC2 is defined as

# D

0@ �

0

0

1A� �
0@ �1�

1

1A (2.4)

and the new regression vector

ˆtn D .Xn, : : : ,Xn�p ,Un�1/.

The original idea of this paper is to control the model (1.1) using the adaptive control associated
with the model (2.3) in order to a posteriori estimate the parameters � and � via the estimator of the
parameter # . We shall now focus our attention on the estimation of the unknown parameter # . We
propose to make use of the least squares estimator which satisfies, for all n> 0,

O#nC1 D O#nC S
�1
n ˆn

�
XnC1 �Un � O#

t
nˆn

�
(2.5)

where the initial value O#0 may be arbitrarily chosen and

Sn D

nX
kD0

ˆkˆ
t
k C IpC2

where the identity matrix IpC2 is added in order to avoid useless invertibility assumption. On the
other hand, we are concern with the crucial choice of the adaptive control Un. The role played by
Un is to regulate the dynamic of the process .Xn/ by forcing Xn to track step by step a bounded
reference trajectory .xn/. We assume that .xn/ is predictable which means that for all n > 1, xn
is Fn�1-measurable. In order to control the dynamic of .Xn/ given by (1.1), we propose to make
use of the Aström–Wittenmark adaptive tracking control associated with (2.3) and given, for all
n> 0, by

Un D xnC1 � O#
t
n ˆn. (2.6)

This suitable choice ofUn will allow us to control the dynamic of the process (1.1) while maintaining
the optimality of the tracking and then estimate without bias the parameters � and �. In all the sequel,
we assume that the reference trajectory .xn/ satisfies

nX
kD1

x2k D o.n/ a.s. (2.7)

3. ALMOST SURE CONVERGENCE

All our asymptotic analysis relies on the following keystone lemma. First of all, let L be the identity
matrix of order pC 1 and denote by H the positive real number

H D

pX
kD1

�
�k C �

k
�2
C
�2.pC1/

1� �2
. (3.1)
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In addition, for 16 k 6 p, let Kk D�
�
�k C �

k
�

and denote by K the line vector

K D
�
0,K1,K2, : : : ,Kp

�
. (3.2)

Moreover, let ƒ be the symmetric square matrix of order pC 2,

ƒD

�
L Kt

K H

	
. (3.3)

Lemma 3.1
Assume that .Vn/ has a finite conditional moment of order > 2. Then, we have

lim
n!1

1

n
Sn D �

2ƒ a.s. (3.4)

where the limiting matrix ƒ is given by (3.3). In addition, as soon as the correlation parameter
�¤ 0, the matrix ƒ is invertible and

ƒ�1 D
1� �2

�2.pC1/

�
SLCKtK �Kt

�K 1

	
(3.5)

where S DH � jjKjj2 is the Schur complement of L in ƒ,

S D
�2.pC1/

1� �2
. (3.6)

Proof
The proof is given in Appendix A. �

Remark 3.1
As L is the identity matrix of order pC 1, we clearly have

det.ƒ/D
�2.pC1/

1� �2
.

Consequently, as long as �¤ 0, det.ƒ/¤ 0 which of course implies that the matrix ƒ is invertible.
The identity (3.5) comes from the block matrix inversion formula given, for example, by Horn and
Johnson [16], page 18.

We start with the almost sure properties of the least squares estimator O#n of # which are
well-known as the process .Xn/ is controllable.

Theorem 3.1
Assume that the serial correlation parameter �¤ 0 and that .Vn/ has a finite conditional moment of
order > 2. Then, O#n converges almost surely to # ,

k O#n � # k
2DO

�
logn

n

	
a.s. (3.7)

Proof
The proof is given in Appendix A. �

We shall now explicit the estimators of � and � and their convergence results. It follows from
(2.4) that �

�

�

	
D�# (3.8)
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where � is the rectangular matrix of size .pC 1/�.pC 2/ given by

�D

0BBBBB@
1 0 � � � � � � � � � 0 1

� 1 0 � � � � � � 0 �

�2 � 1 0 � � � 0 �2

� � � � � � � � � � � � � � � � � � � � �

�p�1 �p�2 � � � � 1 0 �p�1

0 0 � � � � � � � � � 0 �1

1CCCCCA . (3.9)

Consequently, a natural choice to estimate the initial parameters � and � is to make use of�
O�n
O�n

	
D O�n O#n (3.10)

where O�n is simply the opposite of the last coordinate of O#n and

O�n D

0BBBBBB@

1 0 � � � � � � � � � 0 1

O�n 1 0 � � � � � � 0 O�n

O� 2n O�n 1 0 � � � 0 O� 2n
� � � � � � � � � � � � � � � � � � � � �

O�
p�1
n O�

p�2
n � � � O�n 1 0 O�

p�1
n

0 0 � � � � � � � � � 0 �1

1CCCCCCA . (3.11)

Corollary 3.1
Assume that the serial correlation parameter �¤ 0 and that .Vn/ has a finite conditional moment of
order > 2. Then, O�n and O�n both converge almost surely to � and �,

k O�n � � k
2DO

�
logn

n

	
a.s. (3.12)

. O�n � �/
2 DO

�
logn

n

	
a.s. (3.13)

Proof
One can immediately see from (3.8) that the last component of the vector # is ��. The same is true
for the estimator O�n of �. Consequently, we deduce from (3.7) that O�n converges a.s. to � with the
almost sure rate of convergence given by (3.13). Therefore, we obtain from (3.9) and (3.11) that

k O�n �� k
2DO

�
logn

n

	
a.s.

which ensures via (3.7) and (3.10) that O�n converges a.s. to � with the almost sure rate of
convergence given by (3.12). �

4. ASYMPTOTIC NORMALITY

This section is devoted to the asymptotic normality of the couple . O�n, O�n/, which is obtained from
the one of the estimator O#n of # .

Theorem 4.1
Assume that the serial correlation parameter �¤ 0 and that .Vn/ has a finite conditional moment of
order > 2. Then, we have

p
n
�
O#n � #

� L
�!N

�
0,ƒ�1

�
(4.1)

where the matrix ƒ�1 is given by (3.5).
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In order to provide the joint asymptotic normality of the estimators of � and �, denote, for all
16 k 6 p � 1,

�k D

kX
iD1

�k�i�i

and let r be the rectangular matrix of size .pC 1/�.pC 2/ given by

r D

0BBBBB@
1 0 � � � � � � � � � 0 1

� 1 0 � � � � � � 0 �� �1
�2 � 1 0 � � � 0 �2 � �2
� � � � � � � � � � � � � � � � � � � � �

�p�1 �p�2 � � � � 1 0 �p�1 � �p�1
0 0 � � � � � � � � � 0 �1

1CCCCCA . (4.2)

Corollary 4.1
Assume that the serial correlation parameter �¤ 0 and that .Vn/ has a finite conditional moment of
order > 2. Then, we have

p
n

�
O�n � �
O�n � �

	
L
�!N .0,†/ (4.3)

where †Drƒ�1rt . In particular,

p
n. O�n � �/

L
�!N

�
0,
1� �2

�2.pC1/

	
. (4.4)

Proof
The proof is given in Appendix B. �

5. ON THE DURBIN–WATSON STATISTIC

We now investigate the asymptotic behavior of the Durbin–Watson statistic [1–3] given, for all
n> 1, by

ODn D

Pn
kD1 .O"k � O"k�1/

2Pn
kD0 O"

2
k

(5.1)

where the residuals O"k are defined, for all 16 k 6 n, by

O"k DXk �Uk�1 � O�
t
n'k�1 (5.2)

with O�n given by (3.10). The initial value O"0 may be arbitrarily chosen, and we take O"0 D X0. One
can observe that it is also possible to estimate the serial correlation parameter � by the least squares
estimator

�n D

Pn
kD1 O"k O"k�1Pn
kD1 O"

2
k�1

(5.3)

which is the natural estimator of � in the autoregressive framework without control. The
Durbin–Watson statistic ODn is related to �n by the linear relation

ODn D 2.1� �n/C �n (5.4)

where the remainder term �n plays a negligible role. The almost sure properties of ODn and N�n are
as follows.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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Theorem 5.1
Assume that the serial correlation parameter �¤0 and that .Vn/ has a finite conditional moment of
order > 2. Then, �n converges almost surely to �,

.�n � �/
2 DO

�
logn

n

	
a.s. (5.5)

In addition, ODn converges almost surely to D D 2.1� �/. Moreover, if .Vn/ has a finite conditional
moment of order > 4, we also have�

ODn �D
�2
DO

�
logn

n

	
a.s. (5.6)

Our next result deals with the asymptotic normality of the Durbin–Watson statistic. For that
purpose, it is necessary to introduce some notations. Denote

˛ D

0BBBB@
1

��1
...
��p
�1

1CCCCA and ˇ D

0BBBBB@
1

�
...

�p�1

0

1CCCCCA . (5.7)

In addition, let

� Dƒ˛C .1� �2/rtˇ. (5.8)

Theorem 5.2
Assume that the serial correlation parameter �¤0 and that .Vn/ has a finite conditional moment of
order > 2. Then, we have

p
n.�n � �/

L
�!N

�
0, 	2

�
(5.9)

where the asymptotic variance 	2 D .1 � �2/2� tƒ�1� . Moreover, if .Vn/ has a finite conditional
moment of order > 4, we also have

p
n. ODn �D/

L
�!N

�
0, 4	2

�
(5.10)

Proof
The proofs are given in Appendix C. �

Remark 5.1
It follows from (3.5) together with tedious but straightforward calculations that for all p > 1,

	2 D
.1� �2/

�2.pC1/



�2.pC1/

�
4� .4pC 3/�2p C 4p�2.pC1/ � �2.2pC1/

�
C
�
1� .pC 1/�2p C .p � 1/�2.pC1/

�2�
. (5.11)

For example, in the particular case p D 1, we obtain that

	2 D
.1� �2/

�4

�
1� 4�2C 8�4 � 7�6C 4�8 � �10

�
. (5.12)

Moreover, it is not hard to see by a convexity argument that we always have for all p > 1,

	2 6 1� �2

�2.pC1/
.
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In other words, the least squares estimator �n performs better than O�n for the estimation of �. It
means that a statistical test procedure built on the Durbin–Watson statistic should be really powerful.

We are now in the position to propose our new bilateral statistical test built on the Durbin–Watson
statistic ODn. First of all, we shall not investigate the case � D 0 because our approach is only of
interest for ARX processes where the driven noise is given by a first-order autoregressive process.
For a given value �0 such that j�0j < 1 and �0 ¤ 0, we wish to test whether or not the serial
correlation parameter is equal to �0. It means that we wish to test

H0 W “�D �0” against H1 W “�¤ �0”.

According to Theorem 5.1, we have under the null hypothesis H0

lim
n!1

ODn DD0 a.s.

where D0 D 2.1� �0/. In addition, we clearly have from (5.10) that under H0

n

4	2

�
ODn �D0

�2 L
�!
2 (5.13)

where 
2 stands for a Chi-square distribution with one degree of freedom. Via (5.11), an efficient
strategy to estimate the asymptotic variance 	2 is to make use of

O	 2n D
.1� � 2n /

� 2.pC1/n



� 2.pC1/n

�
4� .4pC 3/� 2pn C 4p�

2.pC1/
n � � 2.2pC1/n

�
C
�
1� .pC 1/� 2pn C .p � 1/�

2.pC1/
n

�2�
. (5.14)

Therefore, our new bilateral statistical test relies on the following result.

Theorem 5.3
Assume that the serial correlation parameter �¤0 and that .Vn/ has a finite conditional moment of
order > 4. Then, under the null hypothesis H0 W �D �0,

n

4 O	 2n

�
ODn �D0

�2 L
�!
2 (5.15)

where 
2 stands for a Chi-square distribution with one degree of freedom. In addition, under the
alternative hypothesis H1 W �¤ �0,

lim
n!1

n

4 O	 2n

�
ODn �D0

�2
DC1 a.s. (5.16)

Proof
The proof is given in Appendix C. �

From a practical point of view, for a significance level ˛ where 0 < ˛ < 1, the acceptance and
rejection regions are given by A D Œ0, a˛� and R D�a˛ ,C1Œ where a˛ stands for the .1 � ˛/-
quantile of the Chi-square distribution with one degree of freedom. The null hypothesis H0 will be
accepted if

n

4 O	 2n

�
ODn �D0

�2
6 a˛ ,

and will be rejected otherwise.
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6. NUMERICAL EXPERIMENTS

The purpose of this section is to provide some numerical experiments in order to illustrate our main
theoretical results. In order to keep this section brief, we shall only consider the ARX.p, 1/ process
.Xn/ given by (1.1) in the particular cases p D 1 and p D 2, where the driven noise ."n/ satisfies
(1.2). Moreover, for the sake of simplicity, the reference trajectory .xn/ is chosen to be identically
zero, and .Vn/ is a Gaussian white noise with N .0, 1/ distribution. Finally, our numerical simula-
tions are based on 500 realizations of sample size N D 1000. First of all, consider the ARX.1, 1/
process given, for all n> 1, by

XnC1 D �XnCUnC "nC1 and "nC1 D �"nC VnC1 (6.1)

where we have chosen � D 8=5 and � D �4=5 which implies that D D 18=5 and the Schur
complement S D 162=152. This choice has been made in order to obtain simple expressions for the
matrices ƒ and †. One can easily see from (3.2) to (3.5) that

ƒD
1

45

0@ 45 0 0

0 45 �36
0 �36 80

1A

Figure 1. Almost sure convergence in the particular case p D 1.
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as well as

†Drƒ�1rt D

�
1 0

0 0

	
C

�
15

16

	2 �
1 �1
�1 1

	
.

Figure 1 illustrates the almost sure convergence of O�n, O�n, �n, and ODn. One can see that the almost
sure convergence is very satisfactory.

We shall now focus our attention to the asymptotic normality. We compare the empirical
distributions of the least squares estimates

p
nS

p
1C S

�
O�n � �

�
and

p
nS . O�n � �/

with the standard N .0, 1/ distribution. We proceed in the same way for the Durbin–Watson statistics
p
n

	
.�n � �/ and

p
n

2	

�bDn �D
�

where 	2 is given by (5.12). We use the natural estimates of S and 	2 by replacing � by O�n and
�n, respectively. One can see in Figure 2 that the approximation by a standard N .0, 1/ distribution
performs pretty well. These results are very promising in order to built a statistical test based on
these statistics.

Next, we are interested in the ARX.2, 1/ process given, for all n> 1, by

XnC1 D �1XnC �2Xn�1CUnC "nC1 and "nC1 D �"nC VnC1 (6.2)

where we have chosen �1 D 1, �2 D 4=5 and � D �9=10 which leads to D D 19=5 and
S D 96=.19�106/. It follows from (3.2) to (3.5) that

ƒD
1

9500

0B@
9500 0 0 0

0 9500 0 � 950
0 0 9500 �15295
0 �950 �1529 51292

1CA .

In addition, the diagonal entries of the covariance matrix †Drƒ�1rt are respectively given by

1C
1

S
D
721441

531441
, 1C �2C

4�2

S
D
1947541

656100
,

1

S
D
190000

531441
.

Figure 2. Asymptotic normality in the particular case p D 1.
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Figure 3. Almost sure convergence in the particular case p D 2.

Figure 4. Asymptotic normality in the particular case p D 2.
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Table I. Durbin–Watson test in the particular case p D 1 and �D�0.8.

Durbin–
Watson

Values of �0

�0.9 �0.8 �0.7 �0.6 �0.4 �0.2 0.2 0.4 0.6 0.7 0.8 0.9

N D 50
0.20 0.02 0.12 0.38 0.79 0.95 0.99 0.99 0.99 0.99 1.00 1.00

(0.80) (0.98) (0.88) (0.62) (0.21) (0.05) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

N D 100
0.51 0.03 0.25 0.66 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

(0.49) (0.97) (0.75) (0.34) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N D 1000
1.00 0.05 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.95) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table II. Durbin–Watson test in the particular case p D 2 and �D�0.9.

Durbin–
Watson

Values of �0

�0.9 �0.8 �0.7 �0.6 �0.4 �0.2 0.2 0.4 0.6 0.7 0.8 0.9

N D 50
0.06 0.17 0.52 0.76 0.92 0.96 0.99 0.99 1.00 1.00 1.00 1.00

(0.94) (0.83) (0.48) (0.24) (0.08) (0.04) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

N D 100
0.05 0.38 0.82 0.95 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

(0.95) (0.62) (0.18) (0.05) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N D 1000
0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.95) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Figure 3 shows the almost sure convergence of O�n,1, O�n,2, O�n, �n, and ODn while Figure 4 illustrates
their asymptotic normality. As in the case p D 1, one can observe that the approximation by a
standard N .0, 1/ distribution works pretty well.

We shall achieve this section by illustrating the behavior of the Durbin–Watson statistical test. We
wish to test H0 W � D �0 against H1 W � 6D �0 at 5% level of significance for the ARX processes
given by (6.1) and (6.2). More precisely, we compute the frequency for which H0 is rejected for
different values of �0,

P .rejecting H0 j H1 is true/

via 500 realizations of different sample sizes N D 50, 100, and 1000. In Tables I and II, one can
appreciate the empirical power of the statistical test which means that the Durbin–Watson statistic
performs very well.

APPENDIX A: PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

Denote by A and B the polynomials given, for all ´ 2C, by

A.´/D 1�

pC1X
kD1

ak´
k and B.´/D 1� �´ (A.1)

where a1 D �1 C �, apC1 D ���p and, for 2 6 k 6 p, ak D �k � ��k�1. The ARX.p C 1, 2/
equation given by (2.2) may be rewritten as

A.R/Xn D B.R/Un�1C Vn (A.2)

where R stands for the shift-back operator RXn D Xn�1. On the one hand, B.´/ D 0 if and only
if ´ D 1=� with � ¤ 0. Consequently, as j�j < 1, B is clearly causal and for all ´ 2 C such
that j�´j< 1,

B�1.´/D
1

1� �´
D

1X
kD0

�k´k .

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
DOI: 10.1002/acs



ASYMPTOTIC BEHAVIOR OF THE DURBIN–WATSON STATISTIC FOR ARX PROCESSES

On the other hand, let P be the polynomial given, for all ´ 2C, by

P.´/D B�1.´/.A.´/� 1/D

1X
kD1

pk´
k . (A.3)

It is not hard to see from (A.3) that, for 1 6 k 6 p, pk D �.�k C �k/ while, for all k > p C 1,
pk D ��

k . Consequently, as soon as � ¤ 0, we deduce from [17] that the process .Xn/ given by
(A.2) is strongly controllable. One can observe that in our situation, the usual notion of controlla-
bility is the same as the concept of strong controllability. To be more precise, the assumption that
� ¤ 0 implies that the polynomials A � 1 and B , given by (A.1), are coprime. It is exactly the
so-called controllability condition. We refer the reader to [17] for more details on the links between
the notions of controllability and strong controllability. Finally, we clearly obtain Lemma 3.1 and
Theorem 3.1 from (2.3) together with Theorem 5 of [17].

APPENDIX B: PROOFS OF THE ASYMPTOTIC NORMALITY RESULTS

Theorem 4.1 immediately follows from Theorem 8 of [17]. We shall now proceed to the proof of
Corollary 4.1. First of all, denote for 06 k 6 p � 1,

sk.#/D

kC1X
iD1

�k�iC1#i C �
k#pC2

where �D�#pC2 and sp.#/D �. In addition, let

g.#/D�# D

0BBB@
s0.#/

s1.#/
...

sp.#/

1CCCA . (B.1)

One can easily check that the gradient of the function g is given by

rg.#/D

0BBBBB@
1 0 � � � � � � � � � 0 �0.�/

� 1 0 � � � � � � 0 �� �1.�/

�2 � 1 0 � � � 0 �2 � �2.�/
� � � � � � � � � � � � � � � � � � � � �

�p�1 �p�2 � � � � 1 0 �p�1 � �p�1.�/
0 0 � � � � � � � � � 0 �p.�/

1CCCCCA (B.2)

where �0.�/D 1, �p.�/D�1 and, for all 16 k 6 p � 1,

�k.�/D

kX
iD1

�k�i�i .

The gradient of g coincides with the matrix r given by (4.2). On the one hand, it follows from (3.8)
and (B.1) that

g.#/D

�
�

�

	
. (B.3)

On the other hand, we already saw from (4.1) that
p
n. O#n � #/

L
�!N .0,ƒ�1/. (B.4)

Consequently, we deduce from (B.3) and (B.4) together with the well-known delta method that

p
n

�
O�n � �
O�n � �

	
L
�!N .0,†/

where †Drƒ�1rt , which completes the proof of Corollary 4.1.
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APPENDIX C: PROOFS OF THE DURBIN–WATSON STATISTIC RESULTS

Proof of Theorem 5.1

We are now in position to investigate the asymptotic behavior of the Durbin–Watson statistic. First
of all, we start with the proof of Theorem 5.1. Recall from (2.1) together with (5.2) that the residuals
are given, for all 16 k 6 n, by

O"k DXk �Uk�1 � O�
t
n'k�1 D "k �

Q� tn'k�1 (C.1)

where Q�n D O�n � � . For all n> 1, denote

In D

nX
kD1

O"k O"k�1 and Jn D

nX
kD0

O"2k .

It is not hard to see that

In D O"0 O"1CP
I
n �
Q� tnQ

I
n C
Q� tnS

I
n�1
Q�n, (C.2)

Jn D O"
2
0 CP

J
n � 2

Q� tnQ
J
n C
Q� tnS

J
n�1
Q�n (C.3)

where

P In D

nX
kD2

"k"k�1, QI
n D

nX
kD2

.'k�2"k C 'k�1"k�1/, SIn D

nX
kD1

'k'
t
k�1,

and

P Jn D

nX
kD1

"2k , QJ
n D

nX
kD1

'k�1"k , SJn D

nX
kD0

'k'
t
k .

We deduce from (1.2) that

.1� �2/P Jn D �
2."20 � "

2
n/C 2�NnCLn (C.4)

where

Nn D

nX
kD1

"k�1Vk and Ln D

nX
kD1

V 2k .

Moreover, we assume that .Vn/ has a finite conditional moment of order a > 2. Then, it follows
from Proposition 1.3.23 page 25 of [18] that

lim
n!1

1

n

nX
kD1

V 2k D �
2 a.s. (C.5)

In addition, we also have from Corollary 1.3.21 page 23 of [18] that for all 26 b < a,

nX
kD1

jVkj
b DO.n/ a.s. (C.6)

and

sup
16k6n

jVkj D o.n
1=b/ a.s. (C.7)

However, we clearly obtain from (1.2) that

sup
16k6n

j"kj6
1

1� j�j

 
j"0j C sup

16k6n
jVkj

!
(C.8)
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and

nX
kD1

j"kj
b 6 .1� j�j/�b

 
j"0j

b C

nX
kD1

jVkj
b

!
(C.9)

which of course implies that

sup
16k6n

j"kj D o.n
1=b/ a.s. (C.10)

and
nX
kD1

j"kj
b DO.n/ a.s. (C.11)

In the particular case b D 2, we find that

sup
16k6n

"2k D o.n/ and
nX
kD1

"2k DO.n/ a.s. (C.12)

Hereafter, .Nn/ is a locally square-integrable real martingale with predictable quadratic variation
given, for all n> 1, by

hN in D �
2

n�1X
kD0

"2k .

Therefore, we deduce from (C.12) and the strong law of large numbers for martingales given, for
example, by Theorem 1.3.15 page 20 of [18] that

lim
n!1

Nn

n
D 0 a.s. (C.13)

Hence, we obtain from (C.4) together with (C.5), (C.12), and (C.13) that

lim
n!1

P Jn
n
D

�2

1� �2
a.s. (C.14)

Furthermore, convergence (3.4) immediately implies that

lim
n!1

1

n
SJn D �

2Ip a.s. (C.15)

We also obtain from the Cauchy–Schwarz inequality, (C.12), and (C.15), that

kQJ
n kDO.n/ a.s.

Consequently, we find from the conjunction of (3.12), (C.3), (C.13), and (C.15) that

lim
n!1

Jn

n
D

�2

1� �2
a.s. (C.16)

By the same token, as

P In D �P
J
n�1CNnC �"

2
0 � "0"1, (C.17)

it follows from (C.13) and (C.14) that

lim
n!1

P In
n
D

�2�

1� �2
a.s. (C.18)
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which leads via (C.2) to

lim
n!1

In

n
D

�2�

1� �2
a.s. (C.19)

Therefore, we obtain from definition (5.3) together with (C.16) and (C.19) that

lim
n!1

�n D lim
n!1

In

Jn�1
D � a.s. (C.20)

In order to establish the almost sure rate of convergence given by (5.5), it is necessary to make some
sharp calculations. We infer from (C.2), (C.3), and (C.17) that

In � �Jn�1 DNn �QnCRn (C.21)

where Qn D
�
QI
n � 2�Q

J
n�1

�t Q�n and

Rn D O"0 O"1 � "0"1C �"
2
0 � � O"

2
0 C
Q� tn
�
SIn�1 � �S

J
n�2

�
Q�n.

On the one hand, it follows from convergence (3.4) together with (3.12) and the Cauchy–Schwarz
inequality, that

jQnj DO
�p

n logn
�

and jRnj DO.logn/ a.s.

On the other hand, as hN in D O.n/ a.s., we deduce from Theorem 1.3.24 page 26 of [18] related
to the almost sure rate of convergence in the strong law of large numbers for martingales that
jNnj DO

�p
n logn

�
a.s. Therefore, we can conclude from (C.16) and (C.21) that

.�n � �/
2 DO

�
logn

n

	
a.s. (C.22)

The proof of the almost sure convergence of ODn to D D 2.1��/ immediately follows from (C.20).
As a matter of fact, it follows from (5.1) that�

Jn�1C O"
2
n

�
ODn D 2 .Jn�1 � In/C O"

2
n � O"

2
0. (C.23)

Dividing both sides of (C.23) by Jn�1, we obtain that

ODn D 2.1� fn/ .1� �n/C gn (C.24)

where

fn D
O"2n
Jn

and gn D
O"2n � O"

2
0

Jn
.

However, convergence (C.16) ensures that fn and gn both tend to zero a.s. Consequently, (C.20)
immediately implies that

lim
n!1

ODn D 2.1� �/ a.s. (C.25)

The almost sure rate of convergence given by (5.6) requires some additional assumption on .Vn/.
Hereafter, assume that the noise .Vn/ has a finite conditional moment of order > 4. We clearly
obtain from (3.4), (3.12) together with (C.1) and (C.10) with b D 4 that

sup
16k6n

O"2k D o.
p
n/C o.logn/D o.

p
n/ a.s. (C.26)

which leads by (C.16) to

fn D o

�
1
p
n

	
and gn D o

�
1
p
n

	
a.s. (C.27)
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In addition, it follows from (C.24) that

ODn �D D�2.1� fn/ .�n � �/C 2.�� 1/fnC gn (C.28)

where D D 2.1� �/. Consequently, we obtain by (C.22) and (C.27) that�
ODn �D

�2
DO

�
.�n � �/

2
�
CO

�
f 2n
�
DO

�
logn

n

	
a.s. (C.29)

which achieves the proof of Theorem 5.1.

Proof of Theorem 5.2

The proof of Theorem 5.2 is much more difficult to handle. We already saw from (C.21) that

Jn�1.�n � �/DNn �QnCRn (C.30)

where the remainder Rn plays a negligible role. This is of course not the case for Qn D�
QI
n � 2�Q

J
n�1

�t Q�n. We know from (3.8) and (3.10) that 
O�n � �

O�n � �

!
D O�n O#n ��# D O�n

�
O#n � #

�
C
�
O�n ��

�
# . (C.31)

One can observe that in the particular case p D 1, the right-hand side of (C.31) reduces to the vector

�
�
O#n � #

�
because

O�n D�D

�
1 0 1

0 0 �1

	
.

For all 16 k 6 p � 1, denote

sn.k/D

kX
iD0

O� in�
k�i .

It is easily check that O�n�� can be rewritten as O�n��D . O�n��/An where An is the rectangular
matrix of size .pC 1/�.pC 2/ given by

An D

0BBBBB@
0 0 � � � � � � � � � 0 0 0

1 0 0 � � � � � � 0 0 1

sn.1/ 1 0 0 � � � 0 0 sn.1/

� � � � � � � � � � � � � � � � � � � � � � � �
sn.p � 2/ sn.p � 3/ � � � sn.1/ 1 0 0 sn.p � 2/

0 0 � � � � � � � � � 0 0 0

1CCCCCA .

It was already proven that O�n converges almost surely to � which implies that for all 16 k 6 p� 1,

lim
n!1

sn.k/D .kC 1/�
k a.s.

It immediately leads to the almost sure convergence of An to the matrix A given by

AD

0BBBBB@
0 0 � � � � � � � � � 0 0 0

1 0 0 � � � � � � 0 0 1

2� 1 0 0 � � � 0 0 2�

� � � � � � � � � � � � � � � � � � � � � � � �

.p � 1/�p�2 .p � 2/�p�3 � � � 2� 1 0 0 .p � 1/�p�2

0 0 � � � � � � � � � 0 0 0

1CCCCCA . (C.32)
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Denote by epC2 the last vector of the canonical basis of RpC2. We clearly have from (C.31) that

O�n � �D�e
t
pC2

�
O#n � #

�
which implies that

O�n O#n ��# D Bn

�
O#n � #

�
(C.33)

where Bn D O�n �An#etpC2. By the same token, let 0p be the null vector of Rp and denote by Jp
the rectangular matrix of size p�.pC 1/ given by

Jp D
�
Ip 0p

�
.

We deduce from (C.31) and (C.33) that

Q�n D O�n � � D Jp

�
O�n � �
O�n � �

	
D Jp

�
O�n O#n ��#

�
D JpBn

�
O#n � #

�
. (C.34)

We also have from (2.5) that

O#n � # D S
�1
n�1Mn (C.35)

where

Mn D

nX
kD1

ˆk�1Vk .

Consequently, it follows from (C.30), (C.34), and (C.35) that

Jn�1 .�n � �/DNn �C
t
nMnCRn

where Cn D S�1n�1B
t
nJ
t
pTn with Tn DQI

n � 2�Q
J
n�1, which leads to the main decomposition

p
n

 
O#n � #

�n � �

!
D

1
p
n
AnZnCBn (C.36)

where

Zn D

�
Mn

Nn

	
,

An D n
 

S�1n�1 0pC2

J�1n�1C
t
n J�1n�1

!
and Bn D

p
n

 
0pC2

J�1n�1Rn

!

where 0pC2 stands for the null vector of RpC2. The random sequence .Zn/ is a locally square-
integrable .pC 3/-dimensional martingale with predictable quadratic variation given, for all n> 1,
by

hZin D �
2

n�1X
kD0

 
ˆkˆ

t
k

ˆk"k

ˆt
k
"k "2

k

!
.

We already saw from (3.4) that

lim
n!1

1

n

nX
kD0

ˆkˆ
t
k D �

2ƒ a.s. (C.37)
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In addition, it follows from (C.14) that

lim
n!1

1

n

nX
kD0

"2k D
�2

1� �2
a.s. (C.38)

Furthermore, it is not hard to see that

lim
n!1

1

n

nX
kD1

XkVk D lim
n!1

1

n

nX
kD1

Xk"k D �
2 a.s.

Moreover, we obtain from (1.2) that for all n> p and for all 16 `6 p,

"n D �
`"n�`C

`�1X
iD0

�iVn�i .

Consequently,

nX
kD1

Xk�`"k D

nX
kD1

Xk�`

 
�`"k�`C

`�1X
iD0

�iVk�i

!
,

D�`
nX
kD1

Xk�`"k�`C

`�1X
iD0

�i
nX
kD1

Xk�`Vk�i ,

which implies that for all 16 `6 p,

lim
n!1

1

n

nX
kD1

Xk�`"k D �
2�` a.s.

On the other hand, we infer from (1.1) that

nX
kD1

Uk�1"k D

nX
kD1

Xk"k �

nX
kD1

"2k �

pX
iD1

�i

nX
kD1

Xk�i"k .

Hence, we find that

lim
n!1

1

n

nX
kD1

Uk�1"k D��
2

 
�2

1� �2
C

pX
iD1

�i�
i

!
a.s.

Consequently, we obtain that

lim
n!1

1

n

nX
kD1

ˆk"k D �
2� a.s. (C.39)

where � is the vector of RpC2 such that �t D .1, �, : : : , �p , %p/ with

%p D���
2 �

pX
iD1

�i�
i and �D

1

1� �2
.

We deduce from (C.37), (C.38), and (C.39) that

lim
n!1

1

n
hZin D Z a.s. (C.40)

where Z is the positive-semidefinite symmetric matrix given by

Z D �4
�
ƒ �

�t �

	
. (C.41)
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One can observe that Z is not positive-definite as det.Z/D 0. Nevertheless, it is not hard to see that
.Zn/ satisfies the Lindeberg condition. Therefore, we can conclude from the central limit theorem
for multidimensional martingales given, for example, by Corollary 2.1.10 of [18] that

1
p
n
Zn

L
�!N .0,Z/ . (C.42)

Furthermore, we already saw from (C.32) that

lim
n!1

An D A a.s.

which implies that

lim
n!1

Bn D��A#e
t
pC2 a.s.

One can easily check from (3.9) and (C.32) that

��A#etpC2 Dr

where the matrix r is given by (4.2). Moreover, it follows from the previous calculation that

lim
n!1

1

n
Tn D �

2
�
1� �2

�
T a.s.

where T is the vector of Rp given by T t D .1, �, : : : , �p�1/. Consequently, as the vector
Cn D S

�1
n�1B

t
nJ
t
pTn, we obtain from (3.4) that

lim
n!1

Cn D C a.s.

where

C D
�
1� �2

�
ƒ�1rtJtpT .

Hence, we obtain from (3.4) and (C.16) that

lim
n!1

An DA a.s. (C.43)

where

AD ��2
 

ƒ�1 0pC2�
1� �2

�
C t

�
1� �2

� ! .

In addition, we clearly have from (C.16) that

lim
n!1

Bn D
�
0pC2

0

	
a.s. (C.44)

Finally, we deduce from the conjunction of (C.36), (C.42), (C.43), (C.44), together with Slutsky’s
lemma that

p
n

 
O#n � #

�n � �

!
L
�!N

�
0,AZA0

�
which leads to

p
n.�n � �/

L
�!N

�
0, 	2

�
where the asymptotic variance 	2 is given by

	2 D .1� �2/2
�
C tƒC C 2C t� C �

�
.
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However, one can easily see from (5.7) and (5.8) that

	2 D
�
1� �2

�2
kƒ1=2˛C .1� �2/ƒ�1=2rtˇ k2,

D
�
1� �2

�2
kƒ�1=2.ƒ˛C .1� �2/rtˇ/ k2,

D
�
1� �2

�2
kƒ�1=2� k2,

D
�
1� �2

�2
� tƒ�1� ,

which completes the proof of (5.9). Finally, (5.10) immediately follows from (5.9) together with
(C.27) and (C.28), which achieves the proof of Theorem 5.2.

Proof of Theorem 5.3

The proof of Theorem 5.3 is straightforward. As a matter of fact, we already know from (5.10) that
under the null hypothesis H0,

p
n. ODn �D0/

L
�!N

�
0, 4	2

�
(C.45)

where the asymptotic variance 	2 is given by (5.11). In addition, it follows from (5.14) that

lim
n!1

O	 2n D 	
2 a.s. (C.46)

Hence, we deduce from (C.45), (C.46), and Slutsky’s lemma that under the null hypothesis H0,
p
n

2 O	n

�
ODn �D0

� L
�!N .0, 1/

which obviously implies (5.15). It remains to show that under the alternative hypothesis H1, our test
statistic goes almost surely to infinity. Under H1, we already saw from Theorem 5.1 that

lim
n!1

�n � �0 D �� �0 a.s.

and this limit is different from zero. Consequently,

lim
n!1

n .�n � �0/
2 DC1 a.s. (C.47)

However, we clearly find from (C.28) that

ODn �D0 D�2 .�n � �0/C en (C.48)

where en D �2fn.1 � �n/C gn. Finally, (C.47) and (C.48) clearly lead to (5.16), completing the
proof of Theorem 5.3.
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