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Abstract. We propose a new statistical test for the residual autocorrelation in ARX
adaptive tracking. The introduction of a persistent excitation in the adaptive track-
ing control allows us to build a bilateral statistical test based on the well-known
Durbin-Watson statistic. We establish the almost sure convergence and the asymp-
totic normality for the Durbin-Watson statistic leading to a powerful serial correlation
test. Numerical experiments illustrate the good performances of our statistical test
procedure.

1. Introduction

Model validation is an important and essential final step in the identification of sto-
chastic dynamical systems. This validation step is often done through the analysis
of residuals of the model considered. In particular, testing the non-correlation of the
residuals is a crucial task since many theoretical results require independence of the
driven noise of the systems. Moreover, non-compliance with this hypothesis can lead
to misinterpretation of the theoretical results. For example, it is well known that for
linear autoregressive models with autocorrelated residuals, the least squares estimator is
asymptotically biased, see e.g. [5], [11], [14], [15], and therefore the estimated model
is not the correct one. Consequently, to ensure a good interpretation of the results,
it is necessary to have a powerful tool allowing to detect the possible autocorrelation
of the residuals. The well-known statistical test of Durbin-Watson was introduced to
deal with this question, and more specifically, for detecting the presence of a first-order
autocorrelated noise in linear regression models [8], [9], [10], [11], firstly and for linear
autoregressive models [5], [14], [16], [17], [15], secondly.

To the best of our knowledge, no such serial correlation statistical test is available
for controlled autoregressive processes. The aim of this paper is to carry out a serial
correlation test, based on the Durbin-Watson statistic, for the ARX(p, 1) process given,
for all n ≥ 0, by

(1.1) Xn+1 =

p∑
k=1

θkXn−k+1 + Un + εn+1

where the driven noise (εn) is given by the first-order autoregressive process

(1.2) εn+1 = ρ εn + Vn+1

and the control objective is the tracking of a given reference trajectory. More precisely,
we shall propose a bilateral statistical test allowing to decide between the null hypothesis
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H0 : 〈〈ρ = 0 〉〉 which ensures that the driven noise is not correlated, and the alternative
one H1 : 〈〈ρ 6= 0 〉〉 which means that the residual process is effectively first-order auto-
correlated. The choice of the Durbin-Watson statistic, instead of any other statistical
tests, is governed by its efficienty for autoregressive processes without control, see [5],
[11], [14], [15].

In contrast with the recent work [6], we propose to make use of a different strategy via
a modification of the adaptive control law. This modification relies on the introduction
of an additional persistent excitation. Since the pioneering works of Anderson [1] and
Moore [13], the concept of persistent excitation has been successfully developped in
many fields of applied mathematics such as identification of complex systems, feedback
adaptive control, etc. While it was not possible in [6] to test the non correlation of the
driven noise (εn), that is to test whether or not ρ = 0, the introduction of an additional
persistent excitation term in the control law will be the key point to build our serial
correlation test. Moreover, we wish to mention that all previous works devoted to non
correlation test based on the Durbin-Watson statistic were only related to uncontrolled
processes. Therefore, thanks to the persistent excitation, our statistical test is at our
knowledge the first one in the context of linear processes with adaptive control.

The paper is organized as follows. Section 2 is devoted to the ARX process and to
the persistently excited adaptive control law. In Section 3, we establish the asymptotic
properties of the Durbin-Watson statistic as well as a bilateral statistical test for residual
autocorrelation. Some numerical experiments are provided in Section 4. Finally, all
technical proofs are postponed in the Appendices.

2. Model and excited adaptive tracking

We focus our attention on the ARX(p, 1) process given, for all n ≥ 0, by

(2.1) Xn+1 =

p∑
k=1

θkXn−k+1 + Un + εn+1

where the driven noise (εn) is given by the first-order autoregressive process

(2.2) εn+1 = ρ εn + Vn+1.

We assume that the autocorrelation parameter satisfies |ρ| < 1 and the initial values
X0, ε0 and U0 may be arbitrarily chosen. We also assume that (Vn) is a martingale
difference sequence adapted to the filtration F = (Fn) where Fn is the σ-algebra of the
events occurring up to time n, such that, for all n ≥ 0, E

[
V 2
n+1|Fn

]
= σ2 a.s. with

σ2 > 0. We denote by θ the unknown parameter of the ARX(p, 1) process,

θt = (θ1, . . . , θp).

Our control strategy is to regulate the dynamic of the process (Xn) by forcing Xn to
track a bounded reference trajectory (xn). We assume that (xn) is predictable which
means that for all n ≥ 1, xn is Fn−1-measurable. For the sake of simplicity, we also
assume that

(2.3)
n∑
k=1

x2k = o(n) a.s.
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In order to regulate the dynamic of the process (Xn) given by (2.1), we propose to
make use of the adaptive control law introduced in [6] together with additional persistent
excitation. The strategy consists of using a control associated with a higher order model
than the initial ARX(p, 1), and more precisely an ARX(p+1, 2) model. The introduction
of an additional excitation in the control law will be the key point to build our serial
correlation test for the driven noise (εn), that is to test wether or not ρ = 0. Denote by
(ξn) a centered exogenous noise with known variance ν2 > 0, which will play the role of
the additional excitation. We assume that (ξn) is independent of (Vn), of (xn) and of
the initial state of the system. One can observe that these assumptions are not at all
restrictive as we have in our own hands the additional excitation (ξn)

The excited adaptive control law is given, for all n ≥ 0, by

(2.4) Un = xn+1 − ϑ̂ tn Φn + ξn+1

where ϑ̂n stands for the least squares estimator of the unknown parameter of the ARX(p+
1, 2) model with uncorrelated driven noise

(2.5) Xn+1 = ϑtΦn + Un + Vn+1

where the new parameter ϑ ∈ Rp+2 is related to θ and ρ by the identity

(2.6) ϑ =

 θ
0
0

− ρ
−1

θ
1


and the new regression vector is given by

Φt
n = (Xn, . . . , Xn−p, Un−1).

It is well-known that ϑ̂n satisfies the recursive relation

(2.7) ϑ̂n+1 = ϑ̂n + S−1n Φn

(
Xn+1 − Un − ϑ̂ tnΦn

)
where the initial value ϑ̂0 may be arbitrarily chosen and

(2.8) Sn =
n∑
k=0

ΦkΦ
t
k + Ip+2.

As usual, the identity matrix Ip+2 is added in order to avoid useless invertibility assump-
tion. One can immediately see from (2.6) that the last component of the vector ϑ is
−ρ. Consequently, we obtain an estimator of ρ by simply taking the opposite of the last

coordinate of ϑ̂n which will be denoted by ρ̂n. In addition, one can also deduce from
(2.6) that

(2.9)

(
θ
ρ

)
= ∆ϑ
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where ∆ is the rectangular matrix of size (p+ 1)×(p+ 2) given by

(2.10) ∆ =


1 0 · · · · · · · · · 0 1
ρ 1 0 · · · · · · 0 ρ
ρ2 ρ 1 0 · · · 0 ρ2

· · · · · · · · · · · · · · · · · · · · ·
ρp−1 ρp−2 · · · ρ 1 0 ρp−1

0 0 · · · · · · · · · 0 −1

 .

Then, starting from (2.9) and replacing ρ by ρ̂n in (2.10), we can estimate θ by

(2.11) θ̂n =
(

Ip 0
)

∆̂n ϑ̂n

where ϑ̂n is given by (2.7) and

(2.12) ∆̂n =


1 0 · · · · · · · · · 0 1
ρ̂n 1 0 · · · · · · 0 ρ̂n
ρ̂ 2
n ρ̂n 1 0 · · · 0 ρ̂ 2

n

· · · · · · · · · · · · · · · · · · · · ·
ρ̂ p−1n ρ̂ p−2n · · · ρ̂n 1 0 ρ̂ p−1n

0 0 · · · · · · · · · 0 −1

 .

From the almost sure convergence of ϑ̂n to ϑ, we easily deduce the almost sure conver-

gences of θ̂n and ρ̂n to θ and ρ, respectively.

3. A Durbin-Watson serial correlation test

We are in the position to introduce our serial correlation test based on the Durbin-
Watson statistic which is certainly the most commonly used statistics for testing the
presence of serial autocorrelation. Our goal is to test

H0 : 〈〈ρ = 0 〉〉 vs H1 : 〈〈ρ 6= 0 〉〉.

For that purpose, we consider the Durbin-Watson statistic [5], [8], [9], [10], [11] given,
for all n ≥ 1, by

(3.1) D̂n =

∑n
k=1 (ε̂k − ε̂k−1)2∑n

k=0 ε̂
2
k

where the residuals ε̂k are defined, for all 0 ≤ k ≤ n, by

(3.2) ε̂k = Xk − Uk−1 − θ̂ tnϕk−1
with θ̂n given by (2.11) and ϕtn = (Xn, . . . , Xn−p+1). The initial value ε̂0 may be
arbitrarily chosen and we take ε̂0 = X0.

On the one hand, we would like to emphasize that it is not possible to perform this
statistical test if the control law is not persistently excited [6]. On the other hand, one
can notice that it is also possible to estimate the serial correlation parameter ρ by the
least squares estimator

(3.3) ρn =

∑n
k=1 ε̂kε̂k−1∑n
k=1 ε̂

2
k−1
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which is certainly the more natural estimator of ρ. The Durbin-Watson statistic D̂n is
related to ρn by the linear relation

(3.4) D̂n = 2(1− ρn) + ζn

where the remainder ζn plays a negligeable role. The almost sure properties of D̂n and
ρn are as follows.

Theorem 3.1. Assume (Vn) has a finite conditional moment of order > 2. Then, ρn
converges almost surely to ρ

(3.5) (ρn − ρ)2 = O
(

log n

n

)
a.s.

In addition, D̂n converges almost surely to D = 2(1− ρ). Moreover, if (Vn) has a finite
conditional moment of order > 4, we also have

(3.6)
(
D̂n −D

)2
= O

(
log n

n

)
a.s.

Proof. The proofs are given in Appendix A.

Let us now give the asymptotic normality of the Durbin-Watson statistic which will be
useful to build our serial correlation test.

Theorem 3.2. Assume that (Vn) has finite conditional moments of order > 2. Then,
we have

(3.7)
√
n(ρn − ρ)

L−→ N
(
0, τ 2

)
where the asymptotic variance τ 2 is given by

τ 2 =
(1− ρ2)

(σ2 + ν2)(ν2 + σ2ρ2(p+1))

[(
(σ2 − ν2)− (p+ 1)σ2ρ2p + (p− 1)σ2ρ2(p+1)

)2
+ σ2(ν2 + σ2ρ2(p+1))

(
4− (4p+ 3)ρ2p + 4pρ2(p+1) − ρ2(2p+1)

)]
.(3.8)

Moreover, if (Vn) has finite conditional moments of order > 4, we also have

(3.9)
√
n(D̂n −D)

L−→ N
(
0, 4τ 2

)
.

Proof. The proofs are given in Appendix B.

Remark 3.1. We now point out the crucial role played by the additional excitation
in the control law given by (2.4). It follows from (3.8) that if ρ = 0, then τ 2 reduces
to

τ 2 =
σ2 + ν2

ν2
.

Consequently, if ν2 = 0 i.e. there is no persistent excitation, then this variance
explodes. Therefore, the persistent excitation allows to investigate the important
case ρ = 0 and more generally to stabilize the asymptotic variance of the Durbin-
Watson statistic.
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We are now in the position to test whether or not the serial correlation parameter
ρ = 0. According to Theorem 3.1, we have under the null hypothesis H0,

lim
n→∞

D̂n = 2 a.s.

In addition, we clearly have from (3.9) that under H0,

(3.10)
n

4τ 2

(
D̂n − 2

)2 L−→ χ2

where χ2 stands for a Chi-square distribution with one degree of freedom. It remains to
accurately estimate the asymptotic variance τ 2. It is not hard to see that

(3.11) lim
n→∞

1

n

n∑
k=0

X2
k = σ2 + ν2 a.s.

Consequently, as ν2 is known, it immediately follows from (3.11) that

σ̂2
n =

1

n

n∑
k=1

X2
k − ν2

converges almost surely to σ2. Hence, we can propose to make use of

τ̂ 2n =
(1− ρ 2

n)

(σ̂2
n + ν2)(ν2 + σ̂2

nρ
2(p+1)
n )

[(
(σ̂2

n − ν2)− (p+ 1)σ̂2
nρ

2p
n + (p− 1)σ̂2

nρ
2(p+1)
n

)2
+ σ̂2

n(ν2 + σ̂2
nρ

2(p+1)
n )

(
4− (4p+ 3)ρ 2p

n + 4pρ 2(p+1)
n − ρ 2(2p+1)

n

)]
.(3.12)

Therefore, our bilateral statistical test relies on the following results.

Corollary 3.1. Assume that (xn) and (Vn) have finite conditional moments of order
> 4. Then, under the null hypothesis H0 : “ρ = 0”,

(3.13) Tn =
n

4τ̂ 2
n

(
D̂n − 2

)2 L−→ χ2

In addition, under the alternative hypothesis H1 : “ρ 6= 0”,

(3.14) lim
n→∞

Tn = +∞ a.s.

From a practical point of view, for a significance level α where 0 < α < 1, the acceptance
and rejection regions are given by A = [0, aα] and R =]aα,+∞[ where aα stands for
the (1−α)-quantile of the Chi-square distribution with one degree of freedom. The null
hypothesis H0 will be accepted if Tn ≤ aα, and will be rejected otherwise.

Let us now make a few comments. First of all, under H0, we already saw that τ 2

reduces to (σ2 + ν2)/ν2. It can be estimated by (σ̂2
n + ν2)/ν2. Therefore, it is also

possible to consider the test statistic associated with

(3.15) Tn =
n2ν2

4(σ̂2
n + ν2)

(
D̂n − 2

)2
.

Intuitively, one may think that the statistical test based on Tn is more efficient under H0

since we do not estimate the parameter ρ, but less powerful under H1. This point will be
examined in Section 4. Next, the acceptance of H0 after our statistical test procedure
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should lead to a change of control law. As a matter of fact, if we accept ρ = 0, the
driven noise (εn) is not correlated. It means that we can implement the usual control
law [2] associated with model (2.1) given, for all n ≥ 0, by

Un = xn+1 − θ̂ tnϕn

where θ̂n stands for the standard least-squares estimator associated with (2.1). Finally,
the test provided by Corollary 3.1 may be of course extended if we replace zero by any
ρ0 ∈ R with |ρ0| < 1 in the null hypothesis. To be more precise, we are able as in [6]
to test H0 : 〈〈ρ = ρ0 〉〉 versus H1 : 〈〈ρ 6= ρ0 〉〉. We wish to mention that the asymptotic
variance τ 2 is smaller than the one obtained in [6].

4. Numerical Experiments

This section is devoted to the application of our Durbin-Watson serial correlation
test. Although this test has several potential of being applied in concrete situations, a
large search in the literature did not offer any one. We then consider artificial models
for illustrative purposes and for studying the empirical level and power of our test for
sample sizes from small to moderate, that is n = 50, 100, 200, 500, 1000 and 2000.

In order to keep this section brief, we restrict ourself to the three explosive models in
open-loop

Xn+1 =
3

2
Xn + Un + εn+1(4.1)

Xn+1 = −Xn + 2Xn−1 + Un + εn+1(4.2)

Xn+1 = Xn +
1

2
Xn−1 +

1

4
Xn−2 + Un + εn+1(4.3)

where the driven noise (εn) is given by (2.2) and (Vn) is a sequence of independent and
identically distributed random variables with N (0, 1) distribution. The control law Un is
given by (2.4) where, for the sake of simplicity, the reference trajectory xn = 0 and the
persistent excitation (ξn) s a sequence of independent and identically distributed random
variables with N (0, ν2) distribution.

For each model, we based our numerical simulations on N = 1000 realizations of
sample size n. We use a short learning period of 100 time steps. This learning period
allows us to forget the transitory phase. The level of significance is set to α = 5%. For
the statistical tests based on Tn and Tn, we are interested in the empirical level under
H0 to be compared to the theoretical level 5%, and the empirical power under H1, to
be compared with 1.

First of all, let us study the effect of the variance ν2 of the exogenous noise (ξn) on
the behavior of the statistical test under H0.
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n 50 100 200 500 1000 2000

ν = 0.5 Tn 0.9% 1.6% 2% 3% 2.9% 4.9%
Tn 0% 0.1% 0.5% 2.1% 2.4% 4.4%

ν = 1 Tn 2.5% 2.5% 3.3% 4.4% 4.4% 4.9%
Tn 1.3% 1.3% 2.5% 4.1% 4% 4.8%

ν = 2 Tn 5.2% 4.1% 4.9% 5.3% 4.7% 4.6%
Tn 3.7% 3.7% 4.1% 5.1% 4.7% 4.6%

ν = 3 Tn 5.8% 5.1% 5.6% 4.3% 4.3% 4.8%
Tn 4.5% 4.6% 5.1% 4.2% 4.3% 4.7%

Table 1. Model (4.1). Percentage of rejections of our test under H0

(to be compared to the 5% theoretical level).

It is clear from Table 1, where one can find the results obtained for different values of
ν, that the variance of the persistent excitation (ξn) in the control law plays a crucial
role. Indeed, one can observe that if it is too small, then the empirical level of the test
is bad for sample sizes from small to moderate n ≤ 1000. Of course, a high value of ν2

improves the performance of the test under H0, but degrades the performance of the
tracking. The value ν = 2 realizes a good compromise and allows a good calibration of
the test under H0.

n 50 100 200 500 1000 2000
Model (4.1) Tn 5.2% 4.1% 4.9% 5.3% 4.7% 4.6%

Tn 3.7% 3.7% 4.1% 5.1% 4.7% 4.6%
Model (4.2) Tn 5.9% 3% 3.9% 4.6% 4.8% 5.2%

Tn 4.7% 2.5% 3.7% 4.5% 4.8% 5.1%
Model (4.3) Tn 4.8% 4.7% 4.1% 5.2% 4.9% 6%

Tn 3.8% 3.5% 3.9% 5% 4.9% 5.9%

Table 2. Percentage of rejections of our test under H0 (to be compared
to the 5% theoretical level). ν = 2.

One can find in Table 2 the percentage of rejections of our test under H0 for the
three different models (4.1) to (4.3). The empirical levels of the test are close to the 5%
theoretical level even for small sample sizes. Both statistical tests based on Tn and Tn
are comparable even if the test statistic Tn systematically tends to less reject H0 than
the test statistic Tn.

Let us now study the empirical power of our statistical test. One can find in Tables 3
to 5 the results obtained for each of the three models (4.1) to (4.3). As expected, it is
difficult to reject H0 when ρ = 0.05 for small sample sizes or ρ = 0.1 to a lesser extent.
However, the test performs pretty well as the percentage of correct decisions increases
with the sample size.
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n 50 100 200 500 1000 2000

ρ = 0.05 Tn 6.4% 7.1% 9.6% 18.8% 30.6% 50.3%
Tn 4.8% 6.2% 9% 18.4% 30.5% 50.2%

ρ = 0.1 Tn 11.1% 17.4% 25.9% 56.8% 81.9% 98.2%
Tn 8.9% 15.2% 24.7% 56.2% 81.6% 98.1%

ρ = 0.2 Tn 32% 47.5% 77.6% 98.9% 100% 100%
Tn 10.7% 24.1% 49.5% 91.2% 99.5% 100%

ρ = 0.3 Tn 57% 83% 97.7% 100% 100% 100%
Tn 51.7% 81.7% 97.5% 100% 100% 100%

ρ = 0.4 Tn 78.8% 97.2% 99.7% 100% 100% 100%
Tn 73.4% 96.5% 99.7% 100% 100% 100%

Table 3. Model (4.1). Percentage of correct decisions of our test under H1.

We further observe, as expected, that for a fixed value of the sample size n, the
higher the value of ρ is, the more the percentage of correct decisions increases. We also
notice that for a fixed value of ρ, the empirical power increases with the sample size. In
conclusion, the test performs very well under H1. Moreover, higher values of the order
p does not degrade the performances of our statistical test.

n 50 100 200 500 1000 2000

ρ = 0.05 Tn 5.2% 6.2% 11% 17.6% 28.5% 54.6%
Tn 4.5% 5.6% 10.7% 17.4% 28.3% 54.6%

ρ = 0.1 Tn 11.5% 15% 25.3% 53% 78.1% 97.3%
Tn 9.7% 14.1% 24.6% 52.5% 78.1% 97.3%

ρ = 0.2 Tn 28.5% 45.8% 70.9% 98.3% 99.9% 100%
Tn 24.4% 44.1% 69.6% 98.3% 99.9% 100%

ρ = 0.3 Tn 53.1% 80.6% 97% 100% 100% 100%
Tn 48.4% 79.1% 96.9% 100% 100% 100%

ρ = 0.4 Tn 77.4% 96.4% 100% 100% 100% 100%
Tn 74% 95.9% 100% 100% 100% 100%

Table 4. Model (4.2). Percentage of correct decisions of our test under H1.

Finally, one can realize that for small sample sizes, the statistical test based on Tn
is less powerful than the one associated with Tn. We also wish to mention that, by
symmetry, the performance of our statistical tests are the same for negative values of ρ.
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n 50 100 200 500 1000 2000

ρ = 0.05 Tn 6.9% 7% 9.6% 16% 28.5% 50.6%
Tn 6.1% 6.6% 9.4% 15.9% 28.5% 50.5%

ρ = 0.1 Tn 11% 14.2% 23.8% 53.6% 83.5% 98%
Tn 9.6% 12.6% 23.6% 53% 83.1% 98%

ρ = 0.2 Tn 29.7% 46.2% 77.1% 97.7% 100% 100%
Tn 25.9% 44.6% 76.3% 97.7% 100% 100%

ρ = 0.3 Tn 52.5% 81.1% 97.4% 100% 100% 100%
Tn 48.8% 79.2% 97.3% 100% 100% 100%

ρ = 0.4 Tn 75.9% 96.9% 100% 100% 100% 100%
Tn 73.3% 96.6% 100% 100% 100% 100%

Table 5. Model (4.3). Percentage of correct decisions of our test under H1.

5. Conclusion

Thanks to the introduction of a persistent excitation in the control law used to regulate
an ARX(p,1) process, we were able to propose a non correlation test for the driven noise
based on the well-known Durbin-Watson statistic. In addition, we have shown through
a simulation study on artificial models the efficiency of our statistical test procedure.

Of course, many questions remain open. In particular, the extension of our results to
ARX(p, q) processes where q > 1, would be a very attractive challenge for the control
community. Even though our test is a potentially useful tool, we have seen in the
literature that ARX(p, 1) models are often too simple for being applied to real physical
models. However, the study of such models is much more difficult to handle. On the
one hand, it will be necessary to make an additional assumption of strong controllability,
see [3], [4]. On the other hand, the asymptotic variance given by (3.8) will be much
more complicated as well as its estimate given by (3.12).

Finally, this work may be seen as a first step towards a serial correlation test for
ARX(p, q) processes. A second step of particular great interest would be to bridge
the gap between theory and practice, which means to make the implementation of our
statistical test within a real physical model.

Appendix A

PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

The almost sure convergence results rely on the following keystone lemma.

Lemma A.1. Assume that (Vn) has a finite conditional moment of order > 2. Then,
we have

(A.1) lim
n→∞

Sn
n

= Λ a.s.

where Λ is the symmetric square matrix of order p+ 2 given by

(A.2) Λ =

(
L Kt

K H

)
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with L = (σ2 + ν2)Ip+1 where Ip+1 stands for the identity matrix of order p + 1, K is
the line vector of Rp+1

(A.3) K =
(
K0, K1, K2, . . . , Kp

)
with K0 = ν2 and for all 1 ≤ k ≤ p, Kk = −(σ2 + ν2)θk − σ2ρk and H is the positive
real number given by

(A.4) H = ν2 + σ2

p∑
k=1

(θk + ρk)2 + ν2
p∑

k=1

θ2k +
σ2ρ2(p+1)

1− ρ2
.

The proof of Lemma A.1 is left to the reader as it follows exactly the same lines as
the one of Theorem 4.1 in [4]. Denote by S the Schur complement of L in Λ,

S = H − 1

σ2 + ν2
‖K ‖2= σ2(ν2 + σ2ρ2(p+1))

(1− ρ2)(σ2 + ν2)
.

We deduce from (A.2) that

det(Λ) = S det(L) = S(σ2 + ν2)p+1 =
σ2(ν2 + σ2ρ2(p+1))(σ2 + ν2)p

1− ρ2
.

Consequently, whatever the value of the parameter ρ with |ρ| < 1, det(Λ) 6= 0 which
means that the matrix Λ is always invertible. The almost sure convergence of the least

squares estimator ϑ̂n of the parameter ϑ associated with the ARX(p+1, 2) process given
by (2.5) is as follows.

Theorem A.1. Assume that (Vn) has a finite conditional moment of order > 2. Then,

ϑ̂n converges almost surely to ϑ,

(A.5) ‖ ϑ̂n − ϑ ‖2= O
(

log n

n

)
a.s.

Proof. We deduce from (2.7) and (2.8) that

(A.6) ϑ̂n − ϑ = S−1n−1

(
Mn + ϑ̂0 − ϑ

)
where

Mn =
n∑
k=1

Φk−1Vk.

The sequence (Mn) is a locally square-integrable (p + 2)-dimensional martingale with
increasing process

<M>n= σ2

n−1∑
k=0

ΦkΦ
t
k.

Then, it follows from the strong law of large numbers for martingales given e.g. in
Theorem 4.3.16 of [7] that

(A.7) ‖ ϑ̂n+1 − ϑ ‖2= O
(

log λmax(Sn)

λmin(Sn)

)
a.s.

Therefore, we clearly obtain (A.5) from (A.1) and (A.7). �
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We immediately deduce from Theorem A.1 the almost sure convergence of the least

squares estimators θ̂n and ρ̂n to θ and ρ.

Corollary A.1. Assume that (Vn) has a finite conditional moment of order > 2. Then,

θ̂n and ρ̂n both converge almost surely to θ and ρ,

(A.8) ‖ θ̂n − θ ‖2= O
(

log n

n

)
a.s.

(A.9) (ρ̂n − ρ)2 = O
(

log n

n

)
a.s.

Proof of Theorem 3.1. The proof of Theorem 3.1 relies on Corollary A.1. It is left
to the reader inasmuch as it follows essentially the same lines as those in Appendix C of
[6].

Appendix B

PROOFS OF THE ASYMPTOTIC NORMALITY RESULTS

We shall now prove Theorem 3.2. First of all, we obtain from (3.3) that

(B.1) ρn =
In
Jn−1

where

In =
n∑
k=1

ε̂kε̂k−1 and Jn =
n∑
k=0

ε̂ 2
k .

As in [6], we deduce from (A.6) and (B.1) the martingale decomposition

(B.2)
√
n

(
ϑ̂n − ϑ
ρn − ρ

)
=

1√
n
AnZn + Bn

where (Zn) is the locally square-integrable (p+ 3)-dimensional martingale given by

Zn =

(
Mn

Nn

)
with

Mn =
n∑
k=1

Φk−1Vk and Nn =
n∑
k=1

εk−1Vk.

In addition, it follows from Lemma A.1 that the sequences (An) and (Bn) converge
almost surely to A and B given by

A =

(
Λ−1 0p+2

σ−2(1− ρ2)Ct σ−2(1− ρ2)

)
, B =

(
0p+2

0

)
where 0p+2 stands for the null vector of Rp+2 and Λ is the matrix given by (A.2).
Moreover, the vector C belongs to Rp+2 with

C = (1− ρ2)Λ−1∇tJtpT
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where Jp = (Ip 0p), T is the vector of Rp given by T t = (1, ρ, . . . , ρp−1) and ∇ is the
rectangular matrix of size (p+ 1)×(p+ 2) given by

∇ =


1 0 · · · · · · · · · 0 1
ρ 1 0 · · · · · · 0 ρ− ξ1
ρ2 ρ 1 0 · · · 0 ρ2 − ξ2
· · · · · · · · · · · · · · · · · · · · ·
ρp−1 ρp−2 · · · ρ 1 0 ρp−1 − ξp−1

0 0 · · · · · · · · · 0 −1


where, for all 1 ≤ k ≤ p− 1, ξk is the weighted sum

ξk =
k∑
i=1

ρk−iθi.

We already saw that (Zn) is a martingale with predictable quadratic variation given, for
all n ≥ 1, by

〈Z〉n = σ2

n−1∑
k=0

(
ΦkΦ

t
k Φkεk

Φt
kεk ε2k

)
.

Hence, we deduce once again from Lemma A.1 that

lim
n→∞

1

n
〈Z〉n = Z a.s.

where Z is the positive-definite symmetric matrix given by

Z = σ4

(
σ−2Λ ζ

ζt η

)
where ζ is the vector of Rp+2 such that ζt = (1, ρ, . . . , ρp, %p) with

%p = −ηρ2 −
p∑
i=1

ρiθi and η =
1

1− ρ2
.

As (Zn) satisfies the Lindeberg condition, we deduce from the central limit theorem for
multidimensional martingales given e.g. by Corollary 2.1.10 in [7] that

1√
n
Zn
L−→ N

(
0,Z

)
which, via the martingale decomposition (B.2) and Slutsky’s lemma, leads to

(B.3)
√
n

(
ϑ̂n − ϑ
ρn − ρ

)
L−→ N

(
0,AZA′

)
.

Therefore, we immediately obtain from (B.3) that

(B.4)
√
n(ρn − ρ)

L−→ N
(
0, τ 2

)
where the asymptotic variance τ 2 is given by τ 2 = (1 − ρ2)2(σ−2CtΛC + 2Ctζ + η). It
follows from tedious but straighforward calculations that τ 2 coincides with the expansion
given by (3.8). Finally, as

(B.5) D̂n −D = −2(ρn − ρ) +Rn



14 BERNARD BERCU, BRUNO PORTIER, AND VICTOR VAZQUEZ

where the remainder Rn is negligeable which means that

Rn = o

(
1√
n

)
a.s.

we obtain (3.9) from (B.4) and (B.5), which achieves the proof of Theorem 3.2.

Acknowledgements. The authors would like to thank the three anonymous reviewers
for their constructive comments which helped to improve the paper substantially.

References

[1] B. D. O. Anderson, Exponential convergence and persistent excitation, 21th IEEE Conference on
Decision and Control, 1982.

[2] K. J. Aström and B. Wittenmark, Adaptive Control, 2nd edition, Addison-Wesley, New York, 1995.
[3] B. Bercu and V. Vázquez, A new concept of strong controllability via the Schur complement for

ARX models in adaptive tracking, Automatica, Vol. 46, pp. 1799-1805, 2010.
[4] B. Bercu and V. Vázquez, On the usefulness of persistent excitation in ARX adaptive tracking,

International Journal of Control, Vol. 83, pp. 1145-1154, 2010.
[5] B. Bercu and F. Proia, A sharp analysis on the asymptotic behavior of the Durbin-Watson for the

first-order autoregressive process, ESAIM PS, Vol. 17, pp. 500-530, 2013.
[6] B. Bercu, B. Portier and V. Vázquez, On the asymptotic behavior of the Durbin-Watson statistic

for ARX processes in adaptive tracking, International Journal of Adaptive Control and Signal
Processing, Vol. 28, pp. 1002-1023, 2014.

[7] M. Duflo, Random Iterative Models, Springer Verlag, Berlin, 1997.
[8] J. Durbin and G. S. Watson, Testing for serial correlation in Least Squares regression I, Biometrika,

Vol. 37, pp. 409-428, 1950.
[9] J. Durbin and G. S. Watson, Testing for serial correlation in Least Squares regression II, Biometrika,

Vol. 38, pp. 159-178, 1951.
[10] J. Durbin and G. S. Watson, Testing for serial correlation in Least Squares regression III, Biometrika,

Vol. 58, pp. 1-19, 1971.
[11] J. Durbin, Testing for serial correlation in least-squares regression when some of the regressors are

lagged dependent variables, Econometrica, Vol. 38, pp. 410-421, 1970.
[12] L. Guo and H. F. Chen, The Aström Wittenmark self-tuning regulator revisited and ELS-based

adaptive trackers, IEEE Trans. Automat. Control, Vol. 36, pp. 802-812, 1991.
[13] J. B. Moore, Persistency of excitation in extended least squares, IEEE Trans. Automat. Control,

Vol. 28, pp. 60-68, 1983.
[14] M. Nerlove and K. F. Wallis, Use of the Durbin Watson statistic in inappropriate situations,

Econometrica, Vol. 34, pp. 235-238. 1966.
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Mathématiques, INSA de Rouen, LMI-EA 3226, place Emile Blondel, BP 08, 76131
Mont-Saint-Aignan cedex, France

Universidad Autónoma de Puebla, Facultad de Ciencias F́ısico Matemáticas, Avenida
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