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a b s t r a c t

Our goal is to establish large deviations for the maximum likelihood estimator of the drift
parameter of the Ornstein–Uhlenbeck process without tears.We propose a new strategy to
establish large deviation results which allows us, via a suitable transformation, to circum-
vent the classical difficulty of non-steepness. Our approach holds in the stable case where
the process is positive recurrent as well as in the unstable and explosive cases where the
process is respectively null recurrent and transient. It can also be successfully implemented
for more complex diffusion processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Ornstein–Uhlenbeck process observed over the time interval [0, T ]

dXt = θXtdt + dBt (1.1)

where (Bt) is a standard Brownian motion and the drift θ is an unknown real parameter. For the sake of simplicity, we
assume that the initial state X0 = 0. The process is said to be stable if θ < 0, unstable if θ = 0, and explosive if θ > 0. The
maximum likelihood estimator of θ is given by

θT =

 T
0 XtdXt T
0 X2

t dt
=

X2
T − T

2
 T
0 X2

t dt
. (1.2)

It is well-known that in the stable, unstable, and explosive cases

lim
T→∞

θT = θ a.s.

The purpose of this paper is to establish large deviation principles (LDP) for (θT ) via fairly easy to handle arguments. In the
stable case, Florens-Landais and Pham (1999) proved an LDP for the score function defined, for all c ∈ R, by T

0
XtdXt − c

 T

0
X2
t dt.
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Then, they were able to deduce, by contraction, the LDP for (θT ). However, one can realize in Lemma 4.3 of Florens-Landais
and Pham (1999) that the normalized cumulant generating function of the score function is quite complicated to compute.
Moreover, its LDP relies on a sophisticated time varying change of probability.

In the unstable and explosive cases (Bercu et al., 2012), the strategy for proving an LDP for (θT ) is also far from being
obvious. As a matter of fact, on can observe in Lemma 2.1 of Bercu et al. (2012) that the normalized cumulant generating
function is also very complicated to evaluate. Moreover, as the limiting cumulant generating function is not steep, it is also
necessary to make use of a sophisticated time varying change of probability.

Our approach is totally different. It will allows us, via a suitable transformation, to circumvent the classical difficulty of
non-steepness. The starting point is to establish, thanks to Gärtner–Ellis’s theorem Dembo and Zeitouni (1998), an LDP for
the couple

VT =

 XT
√
T

,
ST
T


(1.3)

where the energy ST is given by

ST =

 T

0
X2
t dt.

Then, we will obtain the LDP for (θT ) by a direct use of the contraction principle. We refer the reader to Bercu and Richou
(2015) where our approach was already implemented for the stable Ornstein–Uhlenbeck process with shift. We also wish
to stress that our strategy could be successfully extended to more complex diffusions such as the Pearson diffusion (Forman
and Sorensen, 2008)

dXt = (a + bXt)dt +


αX2

t + βXt + γ dBt

whereα, β and γ are chosen such that the square root iswell defined for any Xt in the state space. In particular, our approach
could be extended to the Jacobi diffusion (Alfonsi, 2015; Demni and Zani, 2009; Zhao and Gao, 2010)

dXt = (a + bXt)dt + 2

1 − X2

t dBt

where a ≥ 4 + b and a + b ≤ −4, as well as to the Wright–Fisher diffusion (Alfonsi, 2015)

dXt = (a + bXt)dt + 2

Xt(1 − Xt) dBt

where a ≥ 2 and a + b ≤ −2. Furthermore, LDP for the estimators of the unknown parameters of the Cox–Ingersoll–Ross
diffusion

dXt = (a + bXt)dt + 2

XtdBt

where a > 2 and b < 0 can be found in Du Roy de Chaumaray (2016) and Zani (2002). It still remains to investigate the
explosive case b > 0.

The paper is organized as follows. In Section 2, we establish an LDP for the couple given by (1.3) and we deduce
by contraction the LDP for (θT ) in the stable, unstable, and explosive cases. Standard tools for proving LDP such as the
Gärtner–Ellis theorem and the contraction principle are recalled in Appendix A, while all technical proofs of Section 2 are
postponed to Appendix B.

2. Large deviations

The usual notions of full and weak LDP are as follows.

Definition 2.1. A sequence of random vectors (VT ) of Rd satisfies an LDP with speed T and rate function I if I is a lower
semicontinuous function from Rd to [0, +∞] such that,
(i) Upper bound: For any closed set F ⊂ Rd,

lim sup
T→∞

1
T
log P


VT ∈ F


≤ − inf

x∈F
I(x). (2.1)

(ii) Lower bound: For any open set G ⊂ Rd,

− inf
x∈G

I(x) ≤ lim inf
n→∞

1
T
log P


VT ∈ G


. (2.2)

Moreover, I is said to be a good rate function if its level sets are compact.

Definition 2.2. A sequence of random vectors (VT ) of Rd satisfies a weak LDP with speed T and rate function I if I is a lower
semicontinuous function from Rd to [0, +∞] such that the upper bound (2.1) holds for any compact set, while the lower
bound (2.2) is true for any open set.

It is well-known that if (VT ) is exponentially tight and satisfies a weak LDP, then I is a good rate function and the full LDP
holds for (VT ), see Lemma 1.2.18 of Dembo and Zeitouni (1998).
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2.1. The stable case

First of all, we focus our attention on the easy to handle stable case where the parameter θ is negative in (1.1).

Theorem 2.1. The couple (VT ), given by (1.3), satisfies an LDP with speed T and good rate function Iθ given by

Iθ (x, y) =


θ(1 − x2 + θy)

2
+

(1 + x2)2

8y
if y > 0,

+∞ if y ≤ 0.
(2.3)

We clearly deduce from (1.2) thatθT = f (VT ) (2.4)

where f is the continuous function defined, for all x ∈ R and for any positive y, by

f (x, y) =
x2 − 1
2y

.

Hence, an elementary application of the contraction principle given in Appendix A, leads to the following corollary, which
was previously established in Florens-Landais and Pham (1999) via a much more complicated strategy, see also Bercu and
Rouault (2002).

Corollary 2.1. The sequence (θT ) satisfies an LDP with good rate function

Iθ (z) =


−

(z − θ)2

4z
if z ≤

θ

3
,

2z − θ if z ≥
θ

3
.

(2.5)

Proof. The proofs are given in Appendix B. �

2.2. The unstable case

Hereafter, we carry out our strategy on the unstable case where the parameter θ = 0 in (1.1).

Theorem 2.2. The couple (VT ), given by (1.3), satisfies a weak LDP with speed T and good rate function I0 given by

I0(x, y) =

 (1 + x2)2

8y
if y > 0,

+∞ if y ≤ 0.
(2.6)

Despite the lack of exponential tightness, it is possible to establish the following corollary, which was previously proved
in Bercu et al. (2012) via a much more complex procedure.

Corollary 2.2. The sequence (θT ) satisfies an LDP with good rate function

I0(z) =


−

z
4

if z ≤ 0,

2z if z ≥ 0.
(2.7)

Proof. The proofs are given in Appendix B. �

2.3. The explosive case

Finally, we deal with the more complicated explosive case where the parameter θ is positive in (1.1).

Theorem 2.3. The couple (VT ), given by (1.3), satisfies the following bounds.

(i) Upper bound: For any compact set F ⊂ R2,

lim sup
T→∞

1
T
log P


VT ∈ F


≤ − inf

(x,y)∈F
Iθ (x, y). (2.8)
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(ii) Lower bound: For any open set G ⊂ R2,

− inf
(x,y)∈G∩F

Iθ (x, y) ≤ lim inf
n→∞

1
T
log P


VT ∈ G


, (2.9)

where Iθ is the good rate function given by

Iθ (x, y) =


θ(1 − x2 + θy)

2
+

(1 + x2)2

8y
if 0 < y <

1
2θ

(1 + x2),

θ if y ≥
1
2θ

(1 + x2),

+∞ if y ≤ 0,

(2.10)

and F is the set of exposed points of Iθ defined by

F =


(x, y) ∈ R2 such that 0 < y <

1
2θ

(1 + x2)

. (2.11)

Remark 2.1. Let us remark that Iθ is a continuous function onR×R∗
+
and a constant function on (R×R∗

+
)\F . Consequently,

we are able to specify (2.9): For any open and connex set G ⊂ R2 such that G ∩ F ≠ ∅,

inf
(x,y)∈G∩F

Iθ (x, y) = inf
(x,y)∈G

Iθ (x, y).

Despite the weak large deviation result of Theorem 2.3, it is possible to establish the following corollary, which was
previously proved in Bercu et al. (2012) via a much more complex procedure.

Corollary 2.3. The sequence (θT ) satisfies an LDP with good rate function

Iθ (z) =


−

(z − θ)2

4z
if z ≤ −θ,

θ if |z| < θ,

0 if z = θ,

2z − θ if z > θ.

(2.12)

Proof. The proofs are given in Appendix B. �
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Appendix A. Gärtner–Ellis theorem and the contraction principle

The most powerful tool for proving LDP is probably the Gärtner–Ellis theorem. Let (VT ) be sequence of random vectors
of Rd. Denote by LT the normalized cumulant generating function of VT ,

LT (a) =
1
T
logE [exp (T ⟨a, VT ⟩)] .

The existence of the limiting cumulant generating function

L(a) = lim
T→∞

LT (a)

indicates whether or not (VT ) satisfies an LDP. Denote by DL the effective domain of L,

DL =

a ∈ Rd such that L(a) < ∞


.

Let I be the Fenchel–Legendre transform of L,

I(x) = sup
a∈Rd


⟨a, x⟩ − L(a)


.
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Theorem A.4 (Gärtner–Ellis). Assume that the function L exists as an extended real number. Then,

(i) Upper bound: For any compact set F ⊂ Rd,

lim sup
T→∞

1
T
log P


VT ∈ F


≤ − inf

x∈F
I(x). (A.1)

(ii) Lower bound: For any open set G ⊂ Rd,

− inf
x∈G∩F

I(x) ≤ lim inf
n→∞

1
T
log P


VT ∈ G


, (A.2)

where F is the set of exposed points of I whose exposing hyperplane belongs to the interior of DL.
(iii) If L is an essentially smooth, lower semicontinuous function, then the sequence (VT ) satisfies a weak LDP with rate function

I. If, moreover, the origin belongs to the interior of DL, (VT ) satisfies an LDP with good rate function I.

We refer the reader to the excellent book (Dembo and Zeitouni, 1998) for more insight on the theory of large deviations.
In particular, the Gärtner–Ellis is given in Theorem2.3.6 of Dembo and Zeitouni (1998). Another useful tool is the contraction
principlewhich ensures that an LDP remains valid by continuousmapping, see Theorem4.2.1 of Dembo and Zeitouni (1998).

Theorem A.5 (Contraction Principle). Assume that a sequence of random vectors (VT ) with values in E ⊂ Rd satisfies an LDP
with good rate function I, and that AT = f (VT ) where f is a continuous function from E to Rδ . Then, (AT ) also satisfies an LDP
with good rate function J given, for all y ∈ Rδ , by

J(y) = inf

I(x) with x ∈ E such that f (x) = y


, (A.3)

where the infimum over the empty set is taken to be infinite.

Appendix B. Proofs of LDP results

Let LT be the normalized cumulant generating function of the couple

VT =

 XT
√
T

,
ST
T


defined, for all (a, b) ∈ R2, by

LT (a, b) =
1
T
logE


exp


a
√
TXT + bST


.

The proofs of all the LDP results rely on an accurate evaluation of LT (a, b) aswell as on the existence of the limiting cumulant
generating function L(a, b). This is the subject of the following keystone lemma.

Lemma B.1. In the stable and unstable cases θ ≤ 0, the effective domain of L is

DL =


(a, b) ∈ R2 such that b <

θ2

2


, (B.1)

while, in the explosive case θ > 0, the effective domain of L becomes

DL =


(a, b) ∈ R2 such that b < 0


. (B.2)

Moreover, for any (a, b) ∈ DL, we have whatever the value of θ ,

L(a, b) = −
1
2


θ +


θ2 − 2b


+

a2

2
√

θ2 − 2b − θ
 . (B.3)

Remark B.2. One can observe that, as soon as θ ≥ 0, the origin does not belong to the interior of DL.

Proof. We start with the stable and unstable cases. Using the same lines as in Appendix A of Bercu and Richou (2015), we
obtain from Girsanov’s formula associated with (1.1) that

LT (a, b) =
1
T
logEϕ


exp


(θ − ϕ)

 T

0
XtdXt −

1
2
(θ2

− ϕ2)ST + a
√
TXT + bST


,

=
1
T
logEϕ


exp

 (θ − ϕ)

2
(X2

T − T ) + a
√
TXT +

1
2
(2b − θ2

+ ϕ2)ST
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where Eϕ stands for the expectation after the usual change of probability,

dPϕ

dPθ

= exp


(ϕ − θ)

 T

0
XtdXt −

1
2
(ϕ2

− θ2)

 T

0
X2
t dt


.

Consequently, if θ2
− 2b > 0 and ϕ =

√
θ2 − 2b, LT (a, b) reduces to

LT (a, b) =
ϕ − θ

2
+

1
T
logEϕ


exp

θ − ϕ

2


X2
T + a

√
TXT


. (B.4)

Under the new probability Pϕ, XT has an N (0, σ 2
T ) distribution where

σ 2
T =

1
2ϕ


e2ϕT − 1


. (B.5)

Hence, it follows from straightforward Gaussian calculations that

LT (a, b) =
ϕ − θ

2
+

a2σ 2
T

2γT
−

1
2T

log γT (B.6)

where γT = 1 + (ϕ − θ)σ 2
T . However, we clearly obtain from (B.5) that

lim
T→∞

1
T
log σ 2

T = 2ϕ, lim
T→∞

γT

σ 2
T

= ϕ − θ, lim
T→∞

1
T
log γT = 2ϕ.

Hence, we deduce from (B.6) that

lim
T→∞

LT (a, b) = −
1
2

(θ + ϕ) +
a2

2(ϕ − θ)
, (B.7)

which is exactly the limiting cumulant generating function L(a, b) given by (B.3). In the explosive case θ > 0, calculations
are quite the same with the only significant modification that ϕ = −

√
θ2 − 2b instead of

√
θ2 − 2b. Then, (B.6) holds true

with the new parameter ϕ and

lim
T→∞

1
T
log γT = 0, lim

T→∞

γT

σ 2
T

= −(ϕ + θ).

Consequently, (B.3) follows from (B.6), completing the proof of Lemma B.1. �

We shall also make use of normalized cumulant generating function ΛT of the couple

WT =

X2
T

T
,
ST
T


defined, for all (a, b) ∈ R2, by

ΛT (a, b) =
1
T
logE


exp


aX2

T + bST


.

The proofs of LDP results in the unstable and explosive cases require the following lemma on the effective domain of the
limiting cumulant generating function Λ(a, b) of ΛT (a, b).

Lemma B.2. If θ ≥ 0, the effective domain of Λ is given by

DΛ =


(a, b) ∈ R2 such that θ2

− 2b > 0 and 2a + θ <


θ2 − 2b

.

Proof. The proof is the same as that of Lemma B.1. �

B.1. The stable case

Proof of Theorem 2.1. The origin belongs to the interior of the domain DL given by (B.1). Moreover, the function L, defined
in (B.3), is differentiable throughout DL and L is steep, whichmeans that L is essentially smooth. Hence, one can immediately
deduce from the Gärtner–Ellis theorem that the couple (VT ) satisfies an LDP with speed T and good rate function

Iθ (x, y) = sup
(a,b)∈DL


ax + by − L(a, b)


.

It is easy to compute Iθ . After some straightforward calculations, we obtain the expression given by (2.3), which achieves
the proof of Theorem 2.1. �
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Proof of Corollary 2.1. Corollary 2.1 follows from Theorem 2.1 together with an elementary application of the contraction
principle. We already saw in Section 2 thatθT = f (VT ) where f is the continuous function defined, for all x ∈ R and y > 0,
by

f (x, y) =
x2 − 1
2y

.

Consequently, one can immediately deduce from the contraction principle that the sequence (θT ) satisfies an LDPwith good
rate function Iθ given, for all z ∈ R, by

Iθ (z) = inf


Iθ (x, y) with x ∈ R, y > 0 such that f (x, y) = z

. (B.8)

Hereafter, it only remains to properly evaluate Iθ . As soon as 1 + 2yz ≥ 0,

f (x, y) = z ⇐⇒ x2 = 1 + 2yz.

Hence, (2.3) together with (B.8) leads to

Iθ (z) = inf

h(y) with 1 + 2yz ≥ 0, y > 0


(B.9)

where h is the function defined, for any positive y, by

h(y) =
θy(θ − 2z)

2
+

(1 + yz)2

2y
. (B.10)

We clearly have from (B.10) that h is a convex function as

h′(y) =
1
2


(z − θ)2 −

1
y2


and h′′(y) =

1
y3

. (B.11)

The evaluation of the rate function Iθ depends on the location of its argument. On the one hand, as soon as z ≤ θ/3, the
border condition 1 + 2yz ≥ 0 plays a prominent role as

Iθ (z) = h

−

1
2z


= −

(z − θ)2

4z
.

On the other hand, as soon as z ≥ θ/3, the border condition 1 + 2yz ≥ 0 does not have to be taken into account as

Iθ (z) = h
 1
z − θ


= 2z − θ,

which completes the proof of Corollary 2.1. �

B.2. The unstable case

Proof of Theorem 2.2. The proof of Theorem 2.2 can be handled exactly as that of Theorem 2.1 by taking the value θ = 0.
The function L, given by (B.3), is essentially smooth. However, in contrast to the stable case, the origin does no longer belong
to the interior of DL. It means that the sequence (Vn) is not exponentially tight. This is the reason why we obtain a weak LDP
for (Vn) instead of a full LDP, via the weak version of Gärtner–Ellis Theorem A.4. �

Proof of Corollary 2.2. Since Theorem 2.2 provides us a weak LDP for the sequence (Vn), we cannot deduce Corollary 2.2
from a direct application of the contraction principle. Instead of that, we shall prove the LDP for (θT ) by considering the rare
events {θT ≤ c} and {θT ≥ c}, for c negative and c positive, respectively. First of all, we have for any negative c ,

P(θT ≤ c) = P(f (VT ) ≤ c) = P(VT ∈ ∆c)

where the set ∆c is given, for ac(x) = (x2 − 1)/2c , by

∆c =


(x, y) ∈ R2 such that |x| ≤ 1 and y ∈ [0, ac(x)]


.

Since ∆c is a compact set of R2, Theorem 2.2 implies that

lim
T→+∞

1
T
log P(θT ≤ c) = − inf

(x,y)∈∆c
I0(x, y).

However, the rate function I0 has no critical points and I0(x, 0) = +∞. Hence,

lim
T→+∞

1
T
log P(θT ≤ c) = − inf

|x|<1
I0(x, ac(x)) = −I0


0, −

1
2c


=

c
4

= −I0(c).
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We now consider the more tedious case where c is positive. We have for any α > 0,

P(θT ≥ c) = P
θT ≥ c,

|XT |
√
T

≤ α


+ P
θT ≥ c,

|XT |
√
T

> α

. (B.12)

One can remark that

P
θT ≥ c,

|XT |
√
T

≤ α


= P(VT ∈ ∆c,α)

where ∆c,α is the compact set of R2 defined by

∆c,α =


(x, y) ∈ R2 such that 1 ≤ |x| ≤ α and y ∈ [0, ac(x)]


.

Therefore, we deduce from Theorem 2.2 that

lim
T→+∞

1
T
log P(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α
I0(x, y).

After some straightforward calculations, we obtain that, as soon as α ≥
√
3,

lim
T→+∞

1
T
log P

θT ≥ c,
|XT |
√
T

≤ α


= −I0

√
3,

1
c


= −2c = −I0(c). (B.13)

It only remains to prove that the right-hand side of (B.12) is negligible. It follows from Markov’s inequality that for any
positive λ and µ,

P
θT ≥ c,

|XT |
√
T

> α


= P

X2
T − 2cST ≥ T , X2

T > α2T

,

≤ exp

−T (λ + µα2)


E

exp


(λ + µ)X2

T − 2λcST


,

≤ exp

−T


(λ + µα2) − ΛT (λ + µ, −2λc)


. (B.14)

By choosing λ = µ = c/5, it is not hard to see that the couple (2c/5, −2c2/5) belongs to the effective domain DΛ given in
Lemma B.2. Hence, as ΛT converges simply to Λ on DΛ, we infer from (B.14) that for T large enough,

P
θT ≥ c,

|XT |
√
T

> α


≤ exp

−T

 c
5
(1 + α2) − 2Λ

2c
5

, −
2c2

5


which implies that for α and T large enough,

P
θT ≥ c,

|XT |
√
T

> α


≤ exp(−3cT ). (B.15)

Therefore, it follows from (B.12), (B.13) and (B.15) that for any positive c ,

lim
T→+∞

1
T
log P(θT ≥ c) = −2c = −I0(c).

Finally, in the unstable case, XT has an N (0, T ) distribution. Hence, the case c = 0 is straightforward as

lim
T→+∞

1
T
log P(θT ≥ 0) = lim

T→+∞

1
T
log P(X2

T ≥ T ) = 0 = I0(0),

and by the same token

lim
T→+∞

1
T
log P(θT ≤ 0) = I0(0).

From now on, it remains to deduce the LDP for the sequence (θT ) thanks to our tails estimates. First of all, it follows from our
tails estimates that (θT ) is exponentially tight. Consequently, we only need to establish a weak LDP in order to complete our
proof. By applying Theorem 4.1.11 in Dembo and Zeitouni (1998), we just have to show that, for all c1, c2 ∈ R with c1 < c2,

lim
T→+∞

1
T
log P(c1 < θT < c2) = − inf

c∈]c1,c2[
I0(c). (B.16)
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Since I0 is a decreasing function on ] − ∞, 0] and an increasing function on [0, +∞[, (B.16) is a direct consequence of tails
estimates. As a matter of fact, if c1 < c2 < 0, we clearly have

P(c1 < θT < c2) = P(θT < c2) − P(θT ≤ c1) = P(θT < c2)

1 + o(1)


as T tends to infinity. All other cases can be handled in the same way, which achieves the proof of Corollary 2.2. �

B.3. The explosive case

Proof of Theorem 2.3. The proof of Theorem 2.3 can be handled exactly as that of Theorem 2.1 by taking θ > 0. However,
in contrast to the stable case, the origin does no longer belong to the interior of DL and the function L, given by (B.3),
is not essentially smooth. This is the reason why we are only allowed to apply the weakest version of Gärtner–Ellis
Theorem A.4. �

Proof of Corollary 2.3. We shall proceed as in the proof of Corollary 2.2 by considering rare events {θT ≤ c} and {θT ≥ c},
for c < θ and c > θ , respectively. First of all, we already saw that for any negative c, P(θT ≤ c) = P(VT ∈ ∆c) where ∆c is
the compact set of R2 given, for ac(x) = (x2 − 1)/2c , by

∆c =


(x, y) ∈ R2 such that |x| ≤ 1 and y ∈ [0, ac(x)]


.

Since ∆c ∩ F ≠ ∅, it follows from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1
T
log P(θT ≤ c) = − inf

(x,y)∈∆c
Iθ (x, y).

However, the function Iθ has no critical points on F and Iθ (x, 0) = +∞. Consequently,

lim
T→+∞

1
T
log P(θT ≤ c) = − inf

|x|<1
Iθ (x, ac(x)) = −Iθ


0, −

1
2c


.

In particular, as soon as c < −θ ,

lim
T→+∞

1
T
log P(θT ≤ c) =

(c − θ)2

4c
= −Iθ (c),

while, for −θ ≤ c < 0,

lim
T→+∞

1
T
log P(θT ≤ c) = −θ = −Iθ (c).

From now on, assume that 0 ≤ c < θ . We have for any α > 1/2θ ,

P(θT ≤ c) = P
θT ≤ c,

ST
T

≤ α


+ P
θT ≤ c,

ST
T

> α

. (B.17)

One can remark that

P
θT ≤ c,

ST
T

≤ α


= P(VT ∈ ∆c,α)

where ∆c,α is the compact set of R2 defined, for c > 0, by

∆c,α =


(x, y) ∈ R2 such that 0 ≤ y ≤ α and y ≥ ac(x)


,

and, for c = 0, by

∆c,α =


(x, y) ∈ R2 such that 0 ≤ y ≤ α and |x| ≤ 1


.

Since ∆c,α ∩ F ≠ ∅, we obtain from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1
T
log P(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α
Iθ (x, y).

After some straightforward calculations, we find that

lim
T→+∞

1
T
log P

θT ≤ c,
ST
T

≤ α


= −Iθ


0,

1
2θ


= −θ = −Iθ (c). (B.18)
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It now remains to show that the remainder term of (B.17) is negligible. It follows from Markov’s inequality that for any
negative λ and for any positive µ,

P
θT ≤ c,

ST
T

> α


= P

X2
T − 2cST ≤ T , ST > αT


,

≤ exp

−T (λ + µα)


E

exp


λX2

T + (µ − 2λc)ST


,

≤ exp

−T


(λ + µα) − ΛT (λ, µ − 2λc)


. (B.19)

By setting λ = (c − θ)/2 and µ = (c − θ)2/4, one can check that the couple (λ, µ − 2λc) belongs to the effective domain
DΛ given in Lemma B.2. Hence, we obtain from (B.19) that for α and T large enough,

P
θT ≤ c,

ST
T

> α


≤ exp(−2θT ). (B.20)

As a consequence, we deduce from (B.17), (B.18) and (B.20) that for any 0 ≤ c < θ ,

lim
T→+∞

1
T
log P(θT ≤ c) = −θ = −Iθ (c).

Finally, we shall investigate the case c > θ . We have for any α > 0,

P(θT ≥ c) = P
θT ≥ c,

|XT |
√
T

≤ α


+ P
θT ≥ c,

|XT |
√
T

> α

. (B.21)

As in the proof of Corollary 2.2,

P
θT ≥ c,

|XT |
√
T

≤ α


= P(VT ∈ ∆c,α)

where ∆c,α is the compact set of R2 defined by

∆c,α =


(x, y) ∈ R2 such that 1 ≤ |x| ≤ α and y ∈ [0, ac(x)]


.

Since ∆c,α ∩ F ≠ ∅, it follows from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1
T
log P(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α
Iθ (x, y).

Furthermore, denote αc(θ) =
√
c + θ/

√
c − θ . After some straightforward calculations, we obtain that, as soon as α ≥

αc(θ),

lim
T→+∞

1
T
log P

θT ≥ c,
|XT |
√
T

≤ α


= −Iθ


αc(θ),

1
c − θ


= θ − 2c = −Iθ (c). (B.22)

Using once again Markov’s inequality, we have for any positive λ and µ,

P
θT ≥ c,

|XT |
√
T

> α


= P

X2
T − 2cST ≥ T , X2

T > α2T

,

≤ exp

−T (λ + µα2)


E

exp


(λ + µ)X2

T − 2λcST


,

≤ exp

−T


(λ + µα2) − ΛT (λ + µ, −2λc)


. (B.23)

By choosing λ = (c2 − θ2)/4c and µ = (c − θ)2/8c , it is not hard to see that the couple (λ + µ, −2cλ) belongs to the
effective domain DΛ given in Lemma B.2. Hence, we obtain from (B.23) that for α and T large enough,

P
θT ≥ c,

|XT |
√
T

> α


≤ exp(−2(2c − θ)T ). (B.24)

Therefore, it follows from (B.21), (B.22) and (B.24) that for any positive c > θ ,

lim
T→+∞

1
T
log P(θT ≥ c) = θ − 2c = −Iθ (c).

Hereafter, it remains to deduce the LDP for the sequence (θT ) thanks to our tails estimates. Once again, it follows from our
tails estimates that (θT ) is exponentially tight. Consequently, we only need to establish a weak LDP in order to complete our
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proof. By applying Theorem 4.1.11 in Dembo and Zeitouni (1998), we just have to show that, for all c1, c2 ∈ R with c1 < c2
different than θ ,

lim
T→+∞

1
T
log P(c1 < θT < c2) = − inf

c∈]c1,c2[
Iθ (c). (B.25)

In contrast to the previous unstable case, the rate function Iθ is constant on [−θ, θ[. Hence, (B.25) is a direct consequence
of our tails estimates only when ]c1, c2[⊄ [−θ, θ[. We now focus our attention on the more tricky case ]c1, c2[∈ [−θ, θ[ by
assuming, for example, that −θ ≤ c1 < c2 < 0. As in the previous calculation, P(c1 < θT < c2) = P(VT ∈ ∆c1,c2) where
∆c1,c2 is the relative compact set of R2 given by

∆c1,c2 =


(x, y) ∈ R2 such that |x| < 1 and y ∈]ac1(x), ac2(x)[


.

Since ∆c1,c2 ∩ F ≠ ∅, we deduce from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1
T
log P(c1 < θT < c2) = − inf

(x,y)∈∆c1,c2

Iθ (x, y),

= −Iθ


0, −

1
2c2


= −θ,

= − inf
c∈]c1,c2[

Iθ (c).

The two other cases 0 ≤ c1 < c2 < θ and −θ ≤ c1 < 0 ≤ c2 < θ , can be handled in the same way, which completes the
proof of Corollary 2.3. �
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