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Abstract. A law of iterated logarithm is established for the maxi-
mum likelihood estimator of the unknown parameter of the explosive
Gaussian autoregressive process. Outside the Gaussian case, we show
that the law of iterated logarithm does not hold, except for a suitable
averaging on the maximum likelihood estimator.
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1. INTRODUCTION

Since the pioneer works of Kolmogorov, Marcinkiewicz and Zygmund,
and Hartman and Winter [10], [15], [16], [18], a wide literature concerning
the Law of Iterated Logarithm (LIL) for sequences of independent random
variables has been available. Many probabilists have attempted to find mini-
mal conditions under which the LIL holds. A typical result is the general LIL
established by Wittmann [23]. Let (£,) be a sequence of independent random
variables with E[&,] =0 and E[¢2] = a,. Define

Sn = Z éky An = Z Gy,
k=1 k=1
THEOREM 1.1. Assume that

A
lim 4,= and limsup =t

n—++ o n—++oo n

< o0,

and, for 2 <a <3,
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Then we have the LIL

1.2) lim sup 15| =1 as.

n—w 24,log, A,

On the one hand, if (£,) are identically distributed, Theorem 1.1 contains

the classical result of Hartman and Winter [10]. On the other hand, if

sup E[[£,] < oo with « > 2, then condition (1.1) immediately implies that

a, = o(A,log, 4,). In fact, with additional suitable assumptions on (£,), Tom-

kins has shown [19] that it is possible to establish the LIL when a, = 0(4,).

One might wonder if such a result is true with a less restrictive assumption on

(a,). This question has been positively answered by Hartman [9] for Gaussian
random variables.

THEOREM 1.2. Assume that (£,) are independent with N (0, a,) distribution.
Moreover, assume that

(L3) | lim A, =0 and limsup® < 1.

n—+ oo n—++o0 n

Then we have the LIL

1.4 lim sup 15| =1 as.

nso | /24,108, A,

One can observe that if A4, ~ ca, with ¢ > 1, the series given by (1.1)
diverges and the strongest available result is Hartman’s LIL.

The purpose of this paper is to prove LIL for explosive martingales, i.e. for
martingales with increasing processes growing exponentially fast to infinity.
Instead of proposing a rather technical general theory, we have deliberately
chosen to enlighten our approach by focusing our attention on the very
instructive explosive Gaussian autoregressive process.

The paper is organized as follows. Section 2 is devoted to the LIL for the
maximum likelihood estimator of the unknown parameter of the explosive
Gaussian autoregressive process. In Section 3, we prove that we can do without
the normality assumption via a suitable averaging on the maximum likelihood
estimator. However, without averaging, we show in Section 4 that for some
simple explosive martingales, it is impossible to get rid of the normality as-
sumption on (&,).

2. MAIN RESULTS

Corisider the autoregressive process of order p > 1 given, for all n > 0, by

p
(21) Xn = Z aan—k+8m

k=1
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are independent of (X, ..

where the inifial state (X, ..

~

a, as; . Qp—1 Gy
1 0 0
A= |0 1 0 0
0 .0 1 0

.

.» X _p+1) is a square-integrable random vector
and (g,) are i.i.d. distributed as A4 (0, 6?) with ¢ > 0. Moreover, assume that (g,,)
.» X _p+1). Let A be the companion matrix associated

BN

o

In all the sequel, we assume that we are in an explosive situation, ie. all
the eigenvalues of A lie outside the unit circle. Relation (2.1) can be rewritten
as

22) P, =AD,_1+e,, D=A"Po+ ) A" Fe,

k=1

where &, = (X,, ..., X,~,+1)and €, = (g,, 0, ..., 0). Hence, it follows from (2.2)
that Y, = A™"®, converges a.s. and in mean square to

(2.3) Y=0,+ Y A ke,
k=1

The maximum likelihood estimator of the unknown parameter 6' = (a;, ..., a,),
which coincides with the least-squares estimator, is given by

n

(2.4) 0=04Y & 1 X4y Qu= ) &8 +1,
k=1

k=0

where the idehtity matrix I, is added in order to avoid vu.selevss invertibility
assumptions. First of all, it was shown in [8] and [14] that

2.5 i lim A™"Q,_(A7"Y =L as,
where L is the a.s. invertible matrix
(2.6) L=Y A*YY'(4Y.

k

=1

Moreover, the.asymptotic behavior in law of d,, properly normalized, is known
from the earlier papers of Anderson [1], Rao [17], White [22] and the recent
extensions obtained by Touati [20], [21]. To be more precise, we have

479, O,-05H, AY@,-05LH
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with

H=) A7*Y(,
k=1

where ({,) are iid. with 47 (0, ¢%) distribution, and ({,) are independent of
&, and (g,). In the particular case p = 1 and Xy = 0, the limiting distribution
L1 H is Cauchy. It is an important question to know, in addition, whether or
not an LIL holds and it is the purpose of this paper to show that it is the case.
Surprisingly, in contrast with the estimation theory for supercritical Gal-
ton—-Watson processes illustrated by the important contribution of Heyde [5],
[11], [12], [13], this question has not been tackled in the 11terature for explo-
sive autoregressive processes.

THeOREM 2.1. For any left eigenvector f of A associated with the eigenvalue
A, we have the LIL

. I/ *Qu_10,—0) _oKf, Y>|
2. I
@7 im sup ArJ/2logn \/W—
28) limsup I LAY G=0) _ o lf, Y>|

n>o 2logn «/|A|2

where Y and L are given by (2.3) and (2.6), respectively.

COROLLARY 2.1. In the scalar case p = 1, the maximum likelihood estima-
tor (6,) follows the LIL

. 1010,—6] o./6%>—1
lim sup = as.

o /2logn Y1
Remark. It was shown in [14] that, for all ve R? with v # 0, (v, Y) has
a continuous distribution. Hence, in the scalar case, Y # 0 a.s. Moreover, one
can also estimate § by the Yule—Walker estimator

@9 - 0, =0:! Y XeXi-1-

k=1

It is easy to see that 8, converges a.s. to ! and we infer from Corollary 2.1
that

. 0"10,—0Y ¢./6*—1
lim sup =

ol J2logn | O]

In order to establish a more general result on the LIL associated with (d,), we
need some algebraic preliminaries on the Jordan canonical form associated
with the companion matrix A. One can find an invertible matrix P such that
PAP~ ' is a Jordan matrix J, ie. a direct sum of g Jordan blocs J,, Js, ..., J,,
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where, for 1 <i<gq, J; is either a scalar ;e C or a square matrix of order
d; > 1 with diagonal terms each equal to 4; € C, d;— 1 terms each equal to one in
the subdiagonal and all other entries equal to zero. We have d; +d,+...+d, = p
and the orders d; may not be distinct and the values 4; may not be distinct either.
Moreover, for 1 < i < g, let f; be the left eigenvector associated with the Jordan
block J; and set f = (f%, f%, ..., f3). Furthermore, for any vector v of C?, set
v= (v}, vh, ..., vj), where, for 1 <i<gq, v; is a vector of C*%. Finally, for any
vectors u and v of CP, define

q .
A(u,v) = Z ltuidly llodl, and  A(u) = sup {A (u, v) with |l]|, = 1}-

i=1
THEOREM 2.2. Let 9(A) be the spectral radius of A and denote by v the
index associated with g(A). Then, for any vector v of C¥, we have the LIL

(2.10)

lim sup <
o n®" DoAY, /2logn  \/o(A4)?*—1

which implies that
(2.11)

[0* PQu-1 (6, =0 _ ollfll (Q(A)_("_”

=D >A(PY, v) a.s.,

lim sup

1Qn-1 (6. —0)I? < a2 |If1% (e (4)~""V\* 42(PY)
noew 2020 Do (A)* logn  g(4)>—1

=11 ) Ama®*P) **
In addition, for any vector v of C?, we also have

2.12) lim sup - 24 G.-0 _ (Y @ AT as.
k=1

n— o /2logn

More particularly,

147 6. —O)II? %

(2.13) lim sup <62 ) [ILTATFY|? as.
k=1

. n—oo 2 IOg n
Proof First of all, it follows from (2.4) that Q,_,(f,—0) = M, with

Mn=M0+ Z ¢k—18k a.nd MO - —9.

k=1

Moreover, relation (2.2) can be rewritten as
(2.14) ®,=A"Y—R,,

where

o0 =]
Y=0,+) A% and R,= ) A%e.
k=1

k=1
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Consequently, we infer from (2.14) that M, = My+ U, Y-V, with

(2.15) Un = Z Ak_lek and I/n = Z Rk—l Ex.

k=1 k=1

On the one hand, we have

(2.16) AI/" = Z ek8k+ Z Rk&‘k.

k=1 k=1
For any vector v of C?, if wy = v*R,¢, it is not hard to see that (wy) is
a sequence of square-integrable random variables such that
E{w]=0, E[ww]=0if k+#1
and
E[w*1 < o*lpl*@*(1—¢®)™" with 0<o(4™) <o <1,

where g(A~') denotes the spectral radius of A~ !. Then, it follows from the
Rademacher—Menchoff theorem (see e.g. Theorem 2.3.2 of [18]) together with
the usual strong law of large numbers that, for any vector v of CP?, ’

(2.17) lim n~tv* AV, = 6®<v, §;) as.,

where 6% = (1, 0, ..., 0). Hence, we obtain ||V,|| = O (n) a.s. On the other hand,
for the sequence (U,), assume first of all that f is a left eigenvector of A as-
sociated with the eigenvalue A. For any vector u of C?, if &, = A* "1 (f, u)e,,
then (&,) is a sequence of independent random variables distributed as N (0, a,)
with a, = 2 |2]2®~Y|(f, u)|*. Consequently, we find by the use of Theorem 1.2
that

%
2.19) fim sup f*Uwl _oKfwl
e Ay /2logn  JIAPE—1

Hence (2.7) and (2.8) follow from the conjunction of (2.5), (2.17) and (2.18).
More generally, for any vector v of C?, we infer from (2.15) that

q n
(2.19) v*PU, P! = Z Z vFJE g

We shall focus our attention on a particular Jordan block J of dimension d,
associated with the eigenvalue A e C with || > 1, where the index i is omitted in
order to avoid heaviness in the notation. There exists a basis (f1, >, ..., f) of C?
such that ffJ = Aff and, for 2 <j<d, f7J = AT +f1-1. Hencef*J" ¥
and, for 2 <j<d,

fRU=AL)=f*, if 1<k<j—1 and frJ—AL)=0ifj<k<d.
J J J
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Therefore, one can easily check that for all 1<j<d

n n j—1
Z ffjk—18k= Z Z (Pk(l)f;kaka
k=1 k=11=1

where ¢,(1) = A*~! and, for k> d, ¢, (]) = C{Z} A*"/*'~ !, Furthermore, for
any vector u of C? and for all 1 <j<d, set

ji—1
= 121 (,0,,([) <ﬁ, Uy &y,

As before, (£,) is a sequence of independent random variables distributed as
N (0, a,) with

-1
ay = o’ |Jz (pn(l) <ﬁ, u>|2'
=1

We can show after some straightforward calculations that

2 2 2
b G e

Consequently, it immediately follows from Theorem 1.2 that for any vector u of
C? and for all 1 <j<d

| X /77 ey

A2 \2
2.20 lim su k=1 =0'|<.f1,u>|( | ) a.s.
(220 rw U Ve S2logn  G—D! \IAP—

We shall now put together the results obtained for the various compo-
nents in (2.19). Let g(A) be the spectral radius of 4 and denote by v the index
associated with g(4), that is the order of the largest block corresponding to
0(4). Then, we deduce from (2.19) together with (2.20) that, for any vectors
u and v of CP,

(2.21) hm su )A (u, v) as.

o 10D g (A /2logn - /2 (AP —

Therefrom, (2.17) and (2.21) imply (2.10) and (2.11). Furthermore, for, any vec-
tors u and v of C?, set

lv* PU, P~y < olflle (o4 """
v—!

n
W,=v*A""Uyu= )Y v*A~C* Dyg,

k=1

The random variable W, is distributed as A4 (0, ¢2) with

— 0.2 Z (U*A—ku)z
k=1
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Hence, it is well known that

(2.22) lim sup—WIL =a(Y @* A *u?)"? as.
o /2logn k=1

Finally, we deduce (2.12) and (2.13) from (2.17) and (2.22), completing the proof

of Theorem 2.2. =

3. EXTENSION ~

One might wonder if an LIL similar to that of Theorem 2.2 holds without
the normality assumption on (g,). As we shall see in Section- 4, we cannot do
without this normality assumption. However, we shall now prove that, via
a suitable averaging on (§,), it is possible to obtain an LIL with the only
hypothesis that (s,) is a martingale difference sequence with constant condi-
tional variance ¢? and finite conditional moment of order greater than 2. The
main tool for proving LIL in the martingale framework is given by the fol-
lowing lemma (see [7] and [18]).

Let F = (#,) be a sequence of nondecreasing g-algebras. Moreover, let (£,)
be a martingale difference sequence adapted to F such that, for all n >0,
E[E2. 1| #,] = ¢* with ¢ > 0 and sup E[|£, 4 1|*| %,] < o as. for some a > 2.
For a p-dimensional sequence of random vectors (¢,) adapted to F, define

M, = Z Ou-1é, Pp= Z Or 0k +1,,
k=1

k=0

where the identity matrix I, is added in order to avoid useless invertibility
assumptions.

LemMA 3.1. Let (c,) be a deterministic real sequence increasing to infinity.
Assume that c;1P,_, converges as. to a finite random matrix L and that

3.1 : i (!(/p,,_ll)" < as
. n=1 Cp

with 2 < B < a. Then, for any vector ve RP such that v' Lv > 0, we have the LIL

1 1/2
(32) lim sup (m) |1Jt M,,l = O'(Ut LU)1/2 a.s.

n—+oo

Consider the autoregressive process of order p > 1 given, for all n > 0, by
P
X,, = Z akX,,_k+8,,.
k=1

Denote by F = (%#,) the natural filtration %, = ¢ (®,, &1, ..., &,). Assume that
the initial state @, is a square-integrable random vector independent of (g,).
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Moreover, assume that (g,) is a martingale difference sequence adapted to
F such that, for all n >0, E[¢2,|#,] = 62> 0 and, for some « > 2,

(3.3) sup E[le,+1]*| %] < o0 as.
n
THEOREM 3.1. For any vector veR®, we have the LIL

1 1/2 = .
3.4 limsup<m> IZ ”‘A"‘Qk—1(9k_9)| =dl'(A—1,)"'Y] as.,
2 k=1

n—=ow

1/2 n ~

—_— t —k\t — — t L_L —1 Y .

oo (2n log, n) Ikgl 7' (A7H (0~ 0)| = o v (4 ) | as
with Y and L given by (2.3) and (2.6), respectively.

Remark. It is possible to establish a similar result to Theorem 3.1 for
multitype supercritical branching processes.

(3.5 limsup

CoROLLARY 3.1. In the scalar case p =1, the least-squares estimator (0,)
follows the LIL

0+1

1/2 n
) | 60— 0) =0 as.
k=1
Remark. As in the previous section, since liminfE [e2, ;| #,] = o2 with
¢ > 0, the random variable (v, Y) has a continuous distribution for all v R”
with v # 0. Hence, in the scalar case, Y# 0 a.s. Moreover, we immediately infer
from Corollary 3.1 that the Yule-Walker estimator 0, given by (2.9) satisfies

1\ 0+1
i k(@ _ -1y —
im sup (——zn o8, n) lk;1 FO—0"Y =0

lim sup (

n—>w

2nlog,n

—5 < a.s.
n— o0

0*Y

Proof. As in the previous section, we have §,— 0 = 0.1, M, with
M"=M0+Z Qk—lak and M0= —0
k=1

If Z,=A""M,, we clearly have
(36) Zn=A—IZn—1+(pn—18m
where ¢, = A7'Y, and ¥, = A7 "®,. Set

n

n
L= G180 Po=Y op0i+1,.
k=1 k=0

We have already seen that Y, converges as. to Y given by (2.3). Hence, it
follows from Kronecker’s lemma that

limn™'P,=A"1YY' (ALY as.

n-*o
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Moreover, as (@,) is almost surely bounded, we immediately have for all § > 2

i(”j;”)ﬂ <o as.

Consequently, we find via Lemma 3.1 that for any veR”

1 1/2 :
3.7 li 'T|=0cA"1Y]| as.
(3.7 lr'gs;lp<2nlog2n> VT =0cl'A™" Y] as
Furthermore, (3.6) can be rewritten as Z,,1—Z,= —BZ,+ @nén+1 with

B=1,—A"". As the matrix B is invertible, we obtain
(3-8 Y Z,=B Y(Z1—Zpi)+B (T —Th).
k=1

In addition, we can easily deduce from (3.6) together with (3.3) that

(3.9 I1Z,l| = O (max |g]) = o(n*?) as.
1<k<

2KZN

with 2 < B < a. Hence, we infer from (3.7)-3.9) that for any veR”

1/2 n
) et Y Z =o' (A—1,)"" Y] as.
k=1

(3.10) 1"3183 P <2n log,n

Finally, recalling that Z, = 4™"(Mo+ Q.1 (8,—0)), (3.4) and (3.5) follow from
(3.10) together with (2.5), completing the proof of Theorem 3.1. m

4. CONCLUSION

In this paper, we have studied the LIL for (S,) of the typical form

n
Su = Z ak éka
. k=1
where |a| > 1 and (&,) are independent with 4" (0, ¢%) distribution. A natural
question is, without averaging, is it possible to do without the normality assump-
tion on (£,)? We shall show in this section that, except for bounded random
variables, it is impossible to get rid of this normality assumption. Assume that (¢,)
are iid. with mean zero and variance ¢* with ¢ > 0. It is easy to see that

4.1) a"S,5H with H=Y a *&.,.
k=0

In order to prove an LIL for (S,), a classical approach is to introduce a time
change as follows. Let A be the function defined, for all teR with ¢t = 1, by
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A(t) = a*. We obviously have A4~1(t) = (2loga])~log (). Consequently, if
logt
vt = s
2log|al
then it follows from (4.1) that

4.2) la]=>"1S,,] 3 |H|.

Moreover, we have

a’g?

a*—1
which implies that E[S} ] ~ a? 6?(a>—1)~! ¢*'~. However, we shall now show
that the sequence (n™' a®™) is such that (» ! E[S2]) is bounded by 1 but it

never converges. As a matter of fact, let ¥ be the function given, for all teR, by
¥ (f) = t—[t]—1/2. One can easily check that

E[S:]= (@*—1), -

a2vt _ ilal—Z‘I’(A‘i(t)).
lal
As ¥ is a periodic function with period one, the sequence (¢~ !a?") never
converges. Hence, an LIL similar to that of Lemma 3.1 never holds for (Sn).
Furthermore, we have

Vn+1

v =S80l =| ¥ a"fkl=0(v max  |)lal™

k=vp+1 n<kSvp+i

= 0( max likl)\/ﬂ:o(«/nlogzn as.

Wm<kS<vpt1

as soon as |£,| = o(,/logn) a.s. Then we can deduce from Proposition 5 of [7] that

(4.3) lim sup <

n—+o

12
<1 as.
2nlog, n> ISl<1 as

However, we have already seen that (4.3) is no longer true when replacing v, by n.

THEOREM 4.1. Assume that (£,) is a sequence of independent and identically
distributed random variables with |,| = O(/logn) a.s. Then we have

. IS ( la| ) . [
4.4 lim su < lim su a.s.
“4 n—’wp|a|"./logn la|—1 n-'oop./logn

Proof If Z,=a™"S,/./logn, we clearly have

_ logn Enr1
Z,i1=a 1Z,,< >+ 2 ,
i log(n+1)) " /log(n+1)
|§n+ll

1Zn+ 1] <lal™11Z,)+

«/log(n+1)'
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Hence, for all n > 2, we find that

|l
Jiogk

R n
|Z, < la|"®"P)|Zy|+ 3 lal= 7"
k=2

which implies (4.4). =
Remark. If

limsup—l(f—"l—= o0,

o /logn R

one can observe that

; S _
im sup ————=—= o0 as.

o g /logn
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