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a b s t r a c t

We propose a new concept of strong controllability related to the Schur complement of a suitable
limiting matrix. This new notion allows us to extend the previous convergence results associated with
multidimensional ARX models in stochastic adaptive tracking. On the one hand, we carry out a sharp
analysis of the almost sure convergence for both least squares and weighted least squares algorithms.
On the other hand, we also provide a central limit theorem and a law of iterated logarithm for these two
algorithms.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Multidimensional autoregressivewith exogenous inputmodels
(ARX) are versatile and useful tools in many areas of applied
mathematics, such as video segmentation (Vidal, 2008), financial
mathematics (Fukata, Washio, & Motoda, 2006; Huang & Jane,
2009), population dynamics (Li & Zhang, 2008), robotics (Chang
& Tzenog, 2008), and neurosciences (Baraldi, Manginelli, Maieron,
Liberati, & Porro, 2007; Liu, Birch, &Allen, 2003). On the other hand,
stochastic adaptive tracking plays a crucial role in a wide range
of application areas. The goal of this paper is to investigate the
asymptotic properties of estimators of the unknown parameters
associated with multidimensional ARX models in stochastic
adaptive tracking. We shall establish the almost sure convergence
as well as the central limit theorem for both least squares and
weighted least squares algorithms. An important literature is
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Council for Science and Technology, and by the ECOS Scientific Cooperation
Programme. The material in this paper was partially presented at the 47th IEEE
Conference on Decision and Control, December 9–11, 2008, Cancun, Mexico. This
paper was recommended for publication in revised form by Associate Editor
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devoted to parameter estimation for ARMAX models as well as to
adaptive tracking, see e.g. Aström and Wittenmark (1995), Bercu
(1995), Bercu (1998), Bercu and Portier (2008), Caines (1988), Chen
and Guo (1991), Guo and Chen (1991), Guo (1996), Lai and Wei
(1986), and Nazin (1993). Our aim is to carry out a sharp analysis
of the asymptotic behavior of the least squares estimators via the
introduction of a new concept of strong controllability associated
with the Schur complement of a suitable limiting matrix. This new
notion is really easy to understand and it cannot be avoided when
the adaptive tracking control proposed by Aström andWittenmark
(1995) is used. It allows us to extend the previous convergence
results (Bercu, 1998; Bercu& Portier, 2002; Guo&Chen, 1991; Guo,
1994, 1995; Jankumas, 2000).

Consider the d-dimensional autoregressive process with adap-
tive control of order (p, q), ARXd(p, q) for short, given for all n ≥ 0
by

A(R)Xn+1 = B(R)Un + εn+1 (1)

where R stands for the shift-back operator and Xn,Un and εn
are the system output, input and driven noise, respectively. The
polynomials A and B are given for all z ∈ C by

A(z) = Id − A1z − · · · − Apzp,
B(z) = Id + B1z + · · · + Bqzq,

where Ai and Bj are unknown square matrices of order d and Id is
the identity matrix. Denote by θ the unknown parameter of the
model

θ t
= (A1, . . . , Ap, B1, . . . , Bq).

0005-1098/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
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Relation (1) can be rewritten as

Xn+1 = θ tΦn + Un + εn+1, (2)

where the regression vector is given by Φn =

Xp
n ,U

q
n−1

t
with Xp

n = (X t
n, . . . , X

t
n−p+1), Uq

n = (U t
n, . . . ,U

t
n−q+1). In all

the sequel, we shall assume that (εn) is a martingale difference
sequence adapted to the filtration F = (Fn) where Fn stands
for the σ -algebra of the events occurring up to time n. We also
assume that, for all n ≥ 0, E[εn+1ε

t
n+1|Fn] = Γ a.s. where Γ

is a positive definite deterministic covariance matrix. Our new
concept of strong controllability is closely related to the almost
sure convergence of the matrix Sn =

∑n
k=0 ΦkΦ

t
k . In the particular

case q = 0, it was shown in Bercu (1998) that

lim
n→∞

Sn
n

= L a.s.

where L is the block diagonal matrix of order dp given by L =

diag (Γ , . . . , Γ ). Under the classical causality assumption, we
shall now prove that

lim
n→∞

Sn
n

= Λ a.s. (3)

where Λ is the square matrix of order δ = d(p + q)

Λ =


L K t

K H


,

and the matrices H and K will be explicitly calculated. It is well
known (Horn & Johnson, 1990) that det(Λ) = det(L) det(S) where
S = H − KL−1K t is the Schur complement of L in Λ. Moreover,
as L is positive definite, Λ is positive definite if and only if S is
positive definite. Via our new concept of strong controllability,
we shall propose a suitable assumption under which S is positive
definite. One can easily understand this assumption which cannot
be avoided. This new notion will allow us to extend the previous
convergence results (Bercu, 1998; Bercu & Portier, 2002; Guo &
Chen, 1991; Guo, 1994, 1995; Jankumas, 2000) by showing a
central limit theorem (CLT) and a law of iterated logarithm (LIL) for
both the least squares (LS) and the weighted least squares (WLS)
algorithms associated with the estimation of θ .

The paper is organized as follows. Section 2 is devoted to
the introduction of our new concept of strong controllability
togetherwith some linear algebra calculations. Section 3dealswith
the parameter estimation and the stochastic adaptive control. In
Section 4, we establish convergence (3) and we deduce a CLT as
well as a LIL for both LS and WLS algorithms. A short conclusion
is given in Section 5. All technical proofs are postponed in the
Appendices.

2. Strong controllability

In all the sequel, we shall make use of the well-known causality
assumption on B. More precisely, we assume that for all z ∈ Cwith
|z| ≤ 1,

(A1) det(B(z)) ≠ 0.

In other words, the polynomial det(B(z)) only has zeros with
modulus > 1. Consequently, if r > 1 is strictly less than the
smallestmodulus of the zeros of det(B(z)), then B(z) is invertible in
the ball with center zero and radius r and B−1(z) is a holomorphic
function (see e.g. Duflo, 1997, page 155). For all z ∈ C such that
|z| ≤ r , we shall denote

P(z) = B−1(z)(A(z) − Id) =

∞−
k=1

Pkzk. (4)

All the matrices Pk may be explicitly calculated as functions of the
matrices Ai and Bj. For example, we always have P1 = −A1. In
addition, one can see that if p = q = 1 then for all k ≥ 2, Pk =

−(−B1)
k−1A1 while if p = 2, q = 1, Pk = (−B1)

k−2(B1A1 − A2).
Moreover, if p = 1, q = 2 then P2 = B1A1 and P3 = (B2 − B2

1)A1

while if p = 2, q = 2, P2 = B1A1 −A2 and P3 = (B2 −B2
1)A1 +B1A2.

We shall often make use of the square matrix of order dq given, if
p ≥ q, by

Π =


Pp Pp+1 · · · Pp+q−2 Pp+q−1

Pp−1 Pp Pp+1 · · · Pp+q−2
· · · · · · · · · · · · · · ·

Pp−q+2 · · · Pp−1 Pp Pp+1
Pp−q+1 Pp−q+2 · · · Pp−1 Pp

 ,

while, if p ≤ q, by

Π =


Pp Pp+1 · · · · · · Pp+q−2 Pp+q−1
· · · · · · · · · · · · · · · · · ·

P1 P2 · · · · · · Pq−1 Pq
0 P1 P2 · · · Pq−2 Pq−1
· · · · · · · · · · · · · · · · · ·

0 · · · 0 P1 · · · Pp

 .

Definition 1. An ARXd(p, q) model is said to be strongly control-
lable if B is causal and Π is invertible,

(A2) det(Π) ≠ 0.

Remark 2. The concept of strong controllability is not really
restrictive. For example, if p = q = 1, assumption (A2) reduces
to det(A1) ≠ 0, if p = 2, q = 1 to det(A2 − B1A1) ≠ 0, and if p = 1,
q = 2 to det(A1) ≠ 0.

One can observe that our strong controllability notion is closely
related to the usual concept of controllability or to the coprimness
of the matrix polynomials A − Id and B. As a matter of fact, the
resultant of the polynomials A − Id and B is given by

Res(A − Id, B)

=



−Ap −Ap−1 · · · −A1 0 · · · · · · · · · 0
0 −Ap · · · −A2 −A1 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 −Ap −Ap−1 · · · −A1 0
Bq Bq−1 · · · B1 Id 0 · · · · · · 0
0 Bq · · · B2 B1 Id 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 Bq Bq−1 · · · B1 Id


.

This determinant involves q rows with the matrices Ai and p rows
with the matrices Bj. It is not hard to see Fresnel (2001) and
Gelfand, Kapranov, and Zelevinsky (1994) that Res(A − Id, B) =

det(R) where R is the Sylvester matrix

R =



Id B1 B2 · · · Bq 0 · · · · · · 0
0 Id B1 B2 · · · Bq 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 Id B1 B2 · · · Bq
0 −A1 −A2 · · · −Ap 0 · · · · · · 0
0 0 −A1 −A2 · · · −Ap 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 0 −A1 −A2 · · · −Ap


.

For all z ∈ C such that |z| ≤ r , we can also define

D(z) = B−1(z) =

∞−
k=0

Dkzk,

Q (z) = (A(z) − Id)B−1(z) =

∞−
k=1

Qkzk,
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where the matrices Dk and Qk may be explicitly calculated as
functions of the matrices Ai and Bj. Let ∆ be the symmetric square
matrix of order δ

∆ =


Id D1 · · · Dp+q−2 Dp+q−1
0 Id D1 · · · Dp+q−2
· · · · · · · · · · · · · · ·

0 · · · 0 Id D1
0 · · · · · · 0 Id

 .

Moreover, let⨿ be the square matrix of order dq given, if p ≥ q, by

⨿ =


Qp Qp+1 · · · Qp+q−2 Qp+q−1

Qp−1 Qp Qp+1 · · · Qp+q−2
· · · · · · · · · · · · · · ·

Qp−q+2 · · · Qp−1 Qp Qp+1
Qp−q+1 Qp−q+2 · · · Qp−1 Qp

 ,

while, if p ≤ q, by

⨿ =


Qp Qp+1 · · · · · · Qp+q−2 Qp+q−1
· · · · · · · · · · · · · · · · · ·

Q1 Q2 · · · · · · Qq−1 Qq
0 Q1 Q2 · · · Qq−2 Qq−1
· · · · · · · · · · · · · · · · · ·

0 · · · 0 Q1 · · · Qp

 .

In addition, denote by T the rectangular matrix of dimension dq ×

dp given, if p ≥ q, by

T =


0 Q1 Q2 · · · · · · Qp−2 Qp−1
0 0 Q1 · · · · · · Qp−3 Qp−2
· · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 Q1 Q2 · · · Qp−q+1
0 · · · · · · 0 Q1 · · · Qp−q

 ,

while, if p ≤ q, by

T =


0 Q1 · · · Qp−2 Qp−1
0 0 Q1 · · · Qp−2
· · · · · · · · · · · · · · ·

0 · · · 0 0 Q1
· · · · · · · · · · · · · · ·

0 0 · · · 0 0

 .

We can easily see that

Res(A − Id, B) = det(R) = det(R∆) = det(⨿).

Moreover, one can observe that the matrix Π is different from ⨿,
except in the particular case of dimension d = 1. Consequently, if
d = 1,

det(Π) ≠ 0 ⇐⇒ A − Id and B are coprime (5)

which corresponds to the usual notion of controllability. Other-
wise, if d ≥ 2, it is easy to provide many counterexamples for
which the equivalence (5) fails.

For 1 ≤ i ≤ q, denote by Hi the square matrix of order d,
Hi =

∑
∞

k=i PkΓ P t
k−i+1. In addition, let H be the square matrix of

order dq

H =


H1 H2 · · · Hq−1 Hq
H t

2 H1 H2 · · · Hq−1
· · · · · · · · · · · · · · ·

H t
q−1 · · · H t

2 H1 H2

H t
q H t

q−1 · · · H t
2 H1

 . (6)

For 1 ≤ i ≤ p, let Ki = PiΓ and denote by K the rectangular matrix
of dimension dq × dp given, if p ≥ q, by

K =


0 K1 K2 · · · · · · Kp−2 Kp−1
0 0 K1 · · · · · · Kp−3 Kp−2
· · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 K1 K2 · · · Kp−q+1
0 · · · · · · 0 K1 · · · Kp−q

 ,

while, if p ≤ q, by

K =


0 K1 · · · Kp−2 Kp−1
0 0 K1 · · · Kp−2
· · · · · · · · · · · · · · ·

0 · · · 0 0 K1
· · · · · · · · · · · · · · ·

0 0 · · · 0 0

 .

Finally, let L be the block diagonal matrix of order dp

L = diag(Γ , . . . , Γ ), (7)

and denote by Λ the square matrix of order δ = d(p + q)

Λ =


L K t

K H


. (8)

The following lemma is the keystone of all our analysis.

Lemma 3. Let S be the Schur complement of L in Λ

S = H − KL−1K t . (9)

If (A1) and (A2) hold, S and Λ are invertible and

Λ−1
=


L−1

+ L−1K tS−1KL−1
−L−1K tS−1

−S−1KL−1 S−1


. (10)

Proof. The proof is given in Appendix A. �

3. Estimation and adaptive control

First of all, we focus our attention on the estimation of the
parameter θ . We shall make use of the weighted least squares
(WLS) algorithm which satisfies, for all n ≥ 0,θn+1 =θn + anS−1

n (a)Φn

Xn+1 − Un −θ t

nΦn
t

, (11)

where the initial value θ̂0 may be arbitrarily chosen and

Sn(a) =

n−
k=0

akΦkΦ
t
k + Iδ,

where the identity matrix Iδ with δ = d(p + q) is added in
order to avoid useless invertibility assumption. The choice of the
weighted sequence (an) is crucial. If an = 1, we find the standard
LS algorithm with

Sn =

n−
k=0

ΦkΦ
t
k + Iδ,

while, if a−1
n = (log sn)1+γ with sn =

∑n
k=0 ‖Φk‖

2 and γ > 0, we
obtain the WLS algorithm introduced by Bercu and Duflo (1992)
and Bercu (1995).

Next, we are concern with the choice of the stochastic adaptive
control Un. The crucial role played by Un is to regulate the
dynamic of the process (Xn) by forcing Xn to track step by step
a predictable reference trajectory (xn). We shall make use of the
adaptive tracking control proposed by Aström and Wittenmark
(1995) given, for all n ≥ 0, by

Un = xn+1 −θ t
n Φn. (12)

By substituting (12) into (2), we obtain the closed-loop system

Xn+1 − xn+1 = πn + εn+1, (13)

where the prediction error πn = (θ −θn)tΦn. In all the sequel, we
assume that the reference trajectory (xn) satisfies

n−
k=1

‖xk‖2
= o(n) a.s. (14)
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In addition, we also assume that the driven noise (εn) satisfies the
strong law of large numbers, i.e. if

Γn =
1
n

n−
k=1

εkε
t
k, (15)

then Γn converges a.s. toΓ . That is the case if, for example, (εn) is a
white noise or if (εn) has a finite conditional moment of order> 2.
Finally, let (Cn) be the average cost matrix sequence defined by

Cn =
1
n

n−
k=1

(Xk − xk)(Xk − xk)t .

Definition 4. The tracking is said to be optimal if Cn converges a.s.
to Γ .

4. Main results

Our first result is related to the almost sure properties of the LS
algorithm.

Theorem 5. Assume that the ARXd(p, q) model is strongly control-
lable and that (εn) has finite conditional moment of order > 2. Then,
for the LS algorithm, we have

lim
n→∞

Sn
n

= Λ a.s. (16)

where the limiting matrix Λ is given by (8). In addition, the tracking
is optimal

‖Cn − Γn‖ = O


log n
n


a.s. (17)

We can sharpen (17) by

lim
n→∞

1
log n

n−
k=1

(Xk − xk − εk)(Xk − xk − εk)
t
= δΓ a.s.

with δ = d(p + q). Finally,θn converges almost surely to θ

‖θn − θ‖
2

= O


log n
n


a.s. (18)

Our second result deals with the almost sure properties of theWLS
algorithm.

Theorem 6. Assume that the ARXd(p, q) model is strongly control-
lable. In addition, suppose that either (εn) is a white noise or (εn) has
finite conditional moment of order > 2. Then, for the WLS algorithm
with a−1

n = (log sn)1+γ where γ > 0, we have

lim
n→∞

(log n)1+γ Sn(a)
n

= Λ a.s. (19)

where the limiting matrix Λ is given by (8). In addition, the tracking
is optimal

‖Cn − Γn‖ = o


(log n)1+γ

n


a.s. (20)

Finally,θn converges almost surely to θ

‖θn − θ‖
2

= O


(log n)1+γ

n


a.s. (21)

Remark 7. One can observe that Theorems 5 and 6 extend
the results of Bercu (1998) and Guo (1994, 1995) previously
established for controlled ARd(p) models.

Theorem 8. Assume that the ARXd(p, q) model is strongly control-
lable and that (εn) has finite conditional moment of order α > 2. In
addition, suppose that (xn) has the same regularity in norm as (εn)
which means that for all 2 < β < α

n−
k=1

‖xk‖β
= O(n) a.s. (22)

Then, the LS andWLS algorithms share the same central limit theorem

√
n(θn − θ)

L
−→ N (0, Λ−1

⊗ Γ ) (23)

where the inverse matrix Λ−1 is given by (10) and the symbol ⊗

stands for the matrix Kronecker product. Moreover, for any vectors
u ∈ Rd and v ∈ Rδ with δ = d(p + q), they also share the same law
of iterated logarithm

lim sup
n→∞


n

2 log log n

1/2

vt(θn − θ)u

= − lim inf
n→∞


n

2 log log n

1/2

vt(θn − θ)u

=


vtΛ−1v

1/2
utΓ u

1/2
a.s. (24)

In particular,
λmin(Γ )

λmax(Λ)


≤ lim sup

n→∞


n

2 log log n


‖θ̂n − θ‖

2 a.s.

lim sup
n→∞


n

2 log log n


‖θ̂n − θ‖

2
≤


λmax(Γ )

λmin(Λ)


a.s.

where λmin(Γ ) and λmax(Γ ) are the minimum and the maximum
eigenvalues of Γ .

Proof. The proofs are given in Appendix B. �

Remark 9. Some numerical simulations illustrating the asymp-
totic results of Section 4 can be found in Bercu and Vazquez (2008).

5. Conclusion

Via our new concept of strong controllability, we have extended
the analysis of the almost sure convergence for both LS and WLS
algorithms in the multidimensional ARX framework. It enables us
to provide a positive answer to a conjecture in Bercu (1998) by
establishing a CLT and a LIL for these two stochastic algorithms.
In our approach, the leading matrix associated with the matrix
polynomial B, commonly called the high frequency gain, was
supposed to be known and itwas chosen as the identitymatrix Id. It
would be a great challenge for the control community to carry out
similar analysis with unknown high frequency gain and to extend
it to ARMAX models.
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Appendix A. Proof of the keystone Lemma 3

Let Σ be the infinite-dimensional diagonal square matrix

Σ = diag(Γ , . . . , Γ , . . .).
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Moreover, denote by T the infinite-dimensional rectangularmatrix
with dq rows and an infinite number of columns given, if p ≥ q, by

T =


Pp Pp+1 · · · Pk Pk+1 · · ·

Pp−1 Pp · · · Pk−1 Pk · · ·

· · · · · · · · · · · · · · · · · ·

Pp−q+2 Pp−q+3 · · · Pk−q+2 Pk−q+3 · · ·

Pp−q+1 Pp−q+2 · · · Pk−q+1 Pk−q+2 · · ·

 ,

while, if p ≤ q, by

T =


Pp Pp+1 · · · · · · Pk Pk+1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

P1 P2 · · · · · · Pk−p+1 Pk−p+2 · · ·

0 P1 P2 · · · Pk−p Pk−p+1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 P1 P2 · · ·

 .

After some straightforward, although rather lengthy, linear algebra
calculations, it is possible to deduce from (9) that

S = TΣT t . (A.1)

It clearly follows from (A.1) that ker(S) = ker(T t). As a matter
of fact, assume that v ∈ Rdq belongs to ker(T t). Then, T tv = 0,
Sv = 0 so ker(T t) ⊂ ker(S). On the other hand, assume that
v ∈ Rdq belongs to ker(S). Since Sv = 0, we clearly have vtSv =

0, vtTΣT tv = 0. However, the matrix Γ is positive definite.
Consequently, T tv = 0 and ker(S) ⊂ ker(T t). Moreover, it follows
from the well-known rank theorem that

dq = dim(ker(S)) + rank(S). (A.2)

As soon as ker(S) = {0}, dim(ker(S)) = 0 and we obtain from
(A.2) that S is of full rank dq which means that S is invertible.
Furthermore, the left hand side square matrix of order dq of the
infinite-dimensional matrix T is precisely Π . Consequently, if Π is
invertible, Π is of full rank dq, ker(Π) = ker(Π t) = {0} and the
left null space of T reduces to the null vector of Rdq. Hence, if Π is
invertible, we deduce from (A.2) that S is also invertible. Finally, as

det(Λ) = det(L) det(S) = det(Γ )p det(S), (A.3)

we obtain from (A.3) that Λ is invertible and (10) follows
from Horn and Johnson (1990, page 18), completing the proof of
Lemma 3. �

Appendix B. Proofs of Theorems 5, 6 and 8

In order to prove Theorem 5, we shall make use of the same
approach than Bercu (1998) or Guo and Chen (1991). First of all,
we recall that for all n ≥ 0

Xn+1 − xn+1 = πn + εn+1. (B.1)

In addition, let sn =
∑n

k=0 ‖Φk‖
2. It follows from (B.1) and the

strong law of large numbers for martingales (see e.g. Corollary
1.3.25 of Duflo, 1997) that n = O(sn) a.s. Moreover, by Lemma
1 of Guo and Chen (1991), we have

n−
k=1

(1 − fk)‖πk‖
2

= O(log sn) a.s. (B.2)

where fn = Φ t
nS

−1
n Φn. Hence, if (εn) has finite conditional moment

of order α > 2, we can show by the causality assumption (A1) on
the matrix polynomial B together with (B.2) that ‖Φn‖

2
= O(sβn )

a.s. for all 2α−1 < β < 1. In addition, let gn = Φ t
nS

−1
n−1Φn and

δn = tr(S−1
n−1 − S−1

n ). It follows from Proposition 4.2.12 of Duflo
(1997) that (1 − fn)(1 + gn) = 1. Moreover, (δn) tends to zero a.s.
Consequently, as 1+ gn ≤ 2+ δn‖Φn‖

2, we can deduce from (B.2)
that

n−
k=1

‖πk‖
2

= o(sβn log sn) a.s. (B.3)

Therefore, we obtain from (14), (B.1) and (B.3) that

n−
k=1

‖Xk+1‖
2

= o(sβn log sn) + O(n) a.s. (B.4)

Furthermore, we have from assumption (A1) that the control Un =

B−1(R)A(R)Xn+1 − B−1(R)εn+1. It implies by (B.4) that

n−
k=1

‖Uk‖
2

= o(sβn log sn) + O(n) a.s. (B.5)

It remains to put together the two contributions (B.4) and (B.5) to
deduce that sn = o(sn)+ O(n) a.s. leading to sn = O(n) a.s. Hence,
it follows from (B.3) that

∑n
k=1 ‖πk‖

2
= o(n) a.s. Consequently, we

obtain from (14) and (B.1) that

lim
n→∞

1
n

n−
k=1

XkX t
k = Γ a.s.

and, for all 1 ≤ i ≤ p − 1,
∑n

k=0 XkX t
k−i = o(n) a.s. so

lim
n→∞

1
n

n−
k=1

(Xp
k )

tXp
k = L a.s. (B.6)

where Xp
n = (X t

n, . . . , X
t
n−p+1) and the matrix L is given by (7).

Furthermore, we already saw that the control Un = Vn + Wn+1
where the first term Vn = B−1(R)A(R)(πn + xn+1) and the second
term Wn+1 = B−1(R)(A(R) − Id)εn+1. On the one hand, we obtain
from (14) that
n−

k=1

‖Vk‖
2

= o(n) a.s.

Thus, it follows from the Cauchy–Schwarz inequality that for all
1 ≤ i ≤ q,

∑n
k=1 VkV t

k−i+1 = o(n) a.s. as well as
∑n

k=1 VkW t
k−i+2 =

o(n) a.s. On the other hand, we deduce from the strong law of large
numbers for martingales (see e.g. Theorem 4.3.16 of Duflo, 1997)
that

lim
n→∞

1
n

n−
k=1

εkε
t
k = Γ a.s.

while, for all i, j ≥ 0 with i ≠ j,
∑n

k=1 εk−iε
t
k−j = o(n) a.s.

Consequently, asWn = P(R)εn, we obtain that for all 1 ≤ i ≤ q,

lim
n→∞

1
n

n−
k=1

UkU t
k−i+1 = Hi a.s.

which ensures that

lim
n→∞

1
n

n−
k=1

(Uq
k )

tUq
k = H a.s. (B.7)

where Uq
n = (U t

n, . . . ,U
t
n−q+1) and thematrix H is given by (6). Via

the same lines, we also find that

lim
n→∞

1
n

n−
k=1

(Uq
k−1)

tXp
k = K a.s. (B.8)

Therefore, it follows from the conjunction of (B.6)–(B.8) that

lim
n→∞

Sn
n

= Λ a.s. (B.9)

where the limiting matrix Λ is given by (8). Hereafter, we recall
that the ARXd(p, q) model is strongly controllable. Thanks to
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Lemma 3, the matrix Λ is invertible and Λ−1, given by (10), may
be explicitly calculated. This is the key point for the rest of the
proof. On the one hand, it follows from (B.9) that n = O(λmin(Sn)),
‖Φn‖

2
= o(n) a.s. which implies that fn tends to zero a.s. Hence, by

(B.2), we find that
n−

k=1

‖πk‖
2

= O(log n) a.s. (B.10)

On the other hand, we obviously have from (B.1)

‖Cn − Γn‖ = O


1
n

n−
k=1

‖πk−1‖
2


a.s. (B.11)

Consequently, we immediately obtain the tracking optimality (17)
from (B.10) and (B.11). Furthermore, by a well-known result of Lai
and Wei (1986) on the LS estimator, we also have

‖θn+1 − θ‖
2

= O


log λmax(Sn)

λmin(Sn)


a.s. (B.12)

Hence (18) clearly follows from (B.9) and (B.12). Moreover, we
infer from Lemma 1 ofWei (1987) together with (B.9) that (θn+1 −

θ)tSn(θn+1 − θ) = o(log n) a.s. Therefore, it follows from Theorem
4.3.16 part 4 of Duflo (1997) that

lim
n→∞

1
log dn

n−
k=0

(1 − fk)πkπ
t
k = Γ a.s. (B.13)

where dn = det(Sn). In addition, if δ = d(p + q), we deduce from
(B.9) that

lim
n→∞

dn
nδ

= detΛ a.s. (B.14)

Finally, (B.13) and (B.14) imply that

lim
n→∞

1
log n

n−
k=0

πkπ
t
k = δΓ a.s.

which achieves the proof of Theorem5.Wenow carry out the proof
of Theorem 6. By Theorem 1 of Bercu (1995), we have

∞−
n=1

an(1 − fn(a))‖πn‖
2 < +∞ a.s. (B.15)

where fn(a) = anΦ t
nS

−1
n (a)Φn. Then, as a−1

n = (log(sn))1+γ with
γ > 0, we clearly have a−1

n = O(sn) a.s. Hence, it follows
from (B.15) together with Kronecker’s Lemma given e.g. by Lemma
1.3.14 of Duflo (1997) that

n−
k=1

‖πk‖
2

= o(sn) a.s. (B.16)

Therefore, we obtain from (14), (B.1) and (B.16) that
n−

k=1

‖Xk+1‖
2

= o(sn) + O(n) a.s. (B.17)

In addition, we also deduce from assumption (A1) that
n−

k=1

‖Uk‖
2

= o(sn) + O(n) a.s. (B.18)

Consequently, we infer from (B.17) and (B.18) that sn = o(sn) +

O(n) so sn = O(n) a.s. Hence, (B.16) implies that
∑n

k=1 ‖πk‖
2

=

o(n) a.s. Proceeding exactly as in the proof of Theorem 5, we find
that

lim
n→∞

Sn
n

= Λ a.s.

Via an Abel transform, it ensures that

lim
n→∞

(log n)1+γ Sn(a)
n

= Λ a.s. (B.19)

We obviously have from (B.19) that fn(a) tends to zero a.s.
Consequently, we obtain from (B.15) and Kronecker’s Lemma that∑n

k=1 ‖πk‖
2

= o((log sn)1+γ ) a.s. Then, (20) clearly follows from
(B.11). Finally, by Theorem 1 of Bercu (1995)

‖θn+1 − θ‖
2

= O


1

λmin(Sn(a))


a.s. (B.20)

Hence, we obtain (21) from (B.19) and (B.20), which completes the
proof of Theorem 6. Finally, the proof of Theorem 8 is left to the
reader as it follows essentially the same lines as those in Appendix
C of Bercu (1998) in the controlled ARd(p) framework.
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