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ABSTRACT
The purpose of this paper is to investigate the asymptotic behavior of random walks on three-dimensional crystal structures. We focus our
attention on the 1h structure of the ice and the 2h structure of graphite. We establish the strong law of large numbers and the asymptotic
normality for both random walks on ice and graphite. All our analysis relies on asymptotic results for multi-dimensional martingales.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051731

I. INTRODUCTION
A wide variety of materials present a repeating symmetrical arrangement of their atoms, molecules, or ions, known as crystal structures.

Those underlying structures determine some physical properties such as the toughness, the porosity,2 or even the conductivity of the materials.
They can be looked further upon by studying the behavior of random walks in the crystal structures (see, e.g., Ref. 20 for a study of energy
trapping in crystal structure or Ref. 14 for the electrical conductivity of Cu-graphite composites). In particular, random walks are widely used
to determine the diffusion of vacancies or point defects in crystals.13

Random walks represent a large class of Markov chains, and several reference books9,19 are devoted to the study of their properties, such
as the probability of returning to their starting point, the shape of typical trajectories, or their long-time behavior. Polya18 was the first to
observe the influence of the dimension of the lattice on their properties, as the simple random walk on Zd becomes transient when d ≥ 3. The
model of a non-simple random walk on a periodic lattice is quite convenient to study the properties of crystalline solids as stated in (16).

Cubic crystal structures were previously studied in terms of random walks10 or vacancy diffusions3 (see also Refs. 6 and 11 for planar
honeycomb lattices). However, to the best of our knowledge, three-dimensional hexagonal lattices still have to be considered. The goal of
this paper is to investigate the asymptotic behavior of random walks in two hexagonal crystal structures in three dimensions, namely, the 1h
structure of the ice and the 2h structure of graphite. Both of them can be seen as sheets of infinite hexagonal plane lattices stacked on top of
each other, where the way the consecutive sheets are stacked drastically changes the properties of the structure.

On the one hand, the properties of ice are theoretical and experimental research subjects since decades (see, e.g., the pioneering works
of Bradley4 or DiMarzio and Stillinger7). On the other hand, graphite composites find many applications in a wide range16 of fields (see, e.g.,
Ref. 12 as well as the references therein), and its 2h structure may be found in other materials.17 In both cases, understanding the asymptotic
behavior of random walks in such structures is a key step in unveiling some of these materials properties.

Random walks on the two-dimensional hexagonal structure of the graphene have been described many times, especially in Ref. 5 where
the authors studied the large deviation properties of the random walk, using a parity argument based on the structure of such lattice. Our
purpose is to extend several results in Ref. 5 to the three-dimensional hexagonal structures we are interested in. In this paper, we assume that
the transition probabilities are invariant by translating the unit cell of the crystal. Our goal is to establish the strong law of large numbers and
the asymptotic normality of the random walk in both structures.
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Our strategy is to separate the vertices of the lattice depending on their local geometry. In the simple case of the random walk on ice
(RWI), there are only two different types of vertices. On the contrary, the random walk on the graphite (RWG) admits four different types of
vertices, and this situation is much more difficult to handle.

This paper is organized as follows: the definition and description of the random walks and their transition probabilities are given in
Sec. II. Section III is devoted to our main results. To be more precise, we establish the strong law of large numbers and the asymptotic
normality for both RWI and RWG. The results concerning the RWI are proven in Sec. IV, while their counterparts for the RWG are postponed
to Sec. V. All our analysis relies on asymptotic results for multi-dimensional martingales. Finally, Sec. VI contains concluding remarks and
perspectives.

II. TWO POSSIBLE STRUCTURES
The two-dimensional hexagonal structure of the graphene was previously considered in Ref. 5 where two different kind of vertices 𝒱 0

and 𝒱 1 are represented in Fig. 1 with white and black circles.
In the sequel, we shall focus our attention on two different types of structures. The first one corresponds to the 1h structure of the ice.

Sheets are stacked in such a way that the moving particle can always jump from one sheet to another one with small probability, as shown in
Fig. 2.

One can observe that a particle located at a white vertex (respectively, black vertex) is only allowed to jump to a white vertex (respectively,
black vertex). The set of vertices are denoted once again by 𝒱 0 and 𝒱 1 where for i = 0, 1,

𝒱 i = {(a × (i +
3
2

k), a × (
√

3
2

k +
√

3ℓ), h × n) : k, ℓ, n ∈ Z},

where a stands for the distance between adjacent vertices located in the same sheet and h stands for the distance between consecutive sheets
of the ice. The index i = 0 if the vertex is white and the index i = 1 if the vertex is black.

The random walk on the ice with 1h structure is as follows: At time zero, the particle starts at the origin S0 = (0, 0, 0). Afterward, at
time n ≥ 0, assume that the position of the particle is given by Sn = (Xn, Yn, Zn). Then, the particle can jump to an adjacent sheet with small

FIG. 1. Hexagonal structure of graphene.

FIG. 2. Ice with 1h structure.
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probabilities, that is, for i = 0, 1 and for all (x, y, z) ∈ 𝒱 i,
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where 0 ⩽ p ⩽ 1 and 0 < α < 1, the symmetrical case corresponding to α = 1/2. Otherwise, if the particle remains on the same sheet, the
transition probabilities are the same as those in Ref. 5, that is, for i = 0, 1, for all (x, y, z) ∈ 𝒱 i, and for j = 0, 1, 2,
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⎥
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⎦

= pi,j, (3)

where for i = 0, 1,
2

∑
j=0

pi,j = 1 − p.

The transition probabilities are represented in Fig. 3. More precisely, if the particle is located in a vertex of 𝒱 0, it can jump to the sheets
above or below in a vertex of 𝒱 0 with small probabilities αp and (1 − α)p, respectively, or it can reach the three adjacent vertices of 𝒱 1 with

FIG. 3. Transition probabilities for the 1h structure of the ice.
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probabilities p0,0, p0,1, and p0,2. By the same token, if the particle is located in a vertex of 𝒱 1, it can jump to the sheets above or below in a
vertex of 𝒱 1 with small probabilities αp and (1 − α)p, respectively, or it can reach the three adjacent vertices of 𝒱 0 with probabilities p1,0, p1,1,
and p1,2.

A second type of structure we are interested in is the 2h structure of the graphite represented in Fig. 4 where a particle located at a white
vertex (respectively, black vertex) can only jump to a black vertex (respectively, white vertex). In other words, white vertices (respectively,
black vertices) of a given sheet are only connected to black vertices (respectively, white vertices) of the graphite sheets just above or below.

The set of vertices are now denoted by 𝒱 0,0, 𝒱 1,0 and 𝒱 0,1, 𝒱 1,1 where for i = 0, 1 and j = 0, 1,

𝒱 i,j = {(a × ((−1)i+1𝟙j=1 +
3
2

k), a × (
√

3
2

k +
√

3ℓ), h × (2n + 𝟙i≠j)) with k, ℓ, n ∈ Z},

where as before a is the distance between adjacent vertices located in the same sheet and h is the distance between consecutive sheets of
graphene. The index i = 0 if the vertex is white and i = 1 if the vertex is black (which refers to the horizontal local neighborhood), while the
index j = 0 if the particle can move to an adjacent sheet from this vertex and j = 1 otherwise. The main difference with the 1h structure of the
ice is that here the particle does not always have the possibility to jump to an adjacent sheet.

The random walk on the graphite with the 2h structure is as follows: At time zero, the particle starts at the origin S0 = (0, 0, 0). Afterward,
at time n ≥ 0, assume that the position of the particle is given by Sn = (Xn, Yn, Zn). Then, for i = 0, 1, if the particle is located in 𝒱 i,0, it has the
possibility to jump to an adjacent sheet with small probabilities, that is, for i = 0, 1 and for all (x, y, z) ∈ 𝒱 i,0,
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FIG. 4. Graphite with 2h structure.
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FIG. 5. Transition probabilities for the 2h structure of the graphite.

while

P

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sn+1 =

⎛
⎜
⎜
⎜
⎜
⎝

x

y

z − h

⎞
⎟
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRRRR

Sn =

⎛
⎜
⎜
⎜
⎜
⎝

x

y

z

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (1 − α)p, (5)

where 0 ⩽ p ⩽ 1 and 0 < α < 1, the symmetrical case corresponding to α = 1/2. Otherwise, for i = 0, 1, if the particle is located in 𝒱 i,0 and it
remains on the same sheet, the transition probabilities are given for all (x, y, z) ∈ 𝒱 i,0 and for k = 0, 1, 2 by
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where for i = 0, 1,
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FIG. 6. Trajectory of the three-dimensional RWI.
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FIG. 7. Trajectory of the three-dimensional RWG.

Finally, for i = 0, 1, if the particle is located in 𝒱 i,1, the transition probabilities are the same as those in (5), that is, for i = 0, 1, for all (x, y, z)
∈ 𝒱 i,1, and for k = 0, 1, 2,
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where for i = 0, 1,
2

∑
k=0

pi,1,k = 1.

As it was previously done for the 1h structure of the ice, the transition probabilities for the 2h structure of the graphite are given in Fig. 5.
The goal of this paper is to investigate the asymptotic behavior of three-dimensional RWI and RWG with this two different type of

structures. Figures 6 and 7 shows two trajectories of length n = 10 000 of the RWI and RWG, respectively. The distance a between adjacent
vertices and the distance h between consecutive sheets are given by a = 1 and h = 1, while the probability to jump to an adjacent sheet p = 1/5,
α = 1/2 and the transitions probabilities are given, for i = 0, 1 and j = 0, 1, 2, by

pi,j =
1
3
(1 − p).

III. MAIN RESULTS
Our first result concerns the strong law of large numbers for the random walk on ice structure. Let μ be the mean vector defined by

μ =

⎛
⎜
⎜
⎜
⎜
⎝

μ1

μ2

μ3

⎞
⎟
⎟
⎟
⎟
⎠

, (7)
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with

μ1 =
3a
4
(−u0 + u1),

μ2 =
a
√

3
4
(v0 − v1),

μ3 = hp(2α − 1),

where for i = 0, 1, ui = pi,1 + pi,2, and vi = pi,1 − pi,2.

Theorem III.1. For the RWI, we have the almost sure convergence

lim
n→∞

1
n

Sn = μ a.s. (8)

More precisely,

∥
1
n

Sn − μ∥
2
= O(

log n
n
) a.s. (9)

Our second result is devoted to the asymptotic normality for the random walk on the ice structure. For this purpose, denote

σ2
=

⎛
⎜
⎜
⎜
⎜
⎝

σ2
1 σ1,2 0

σ1,2 σ2
2 0

0 0 σ2
3 ,

⎞
⎟
⎟
⎟
⎟
⎠

(10)

where

σ2
1 = a2

(p(1 − p) +
3
8
(3 − 4p)(u0 + u1) −

9
8
(u2

0 + u2
1)),

σ2
2 =

3a2

8
((u0 + u1) − (v2

0 + v2
1)),

σ2
3 = h2p(1 − p(2α − 1)2

),

σ1,2 =
a2√3

8
((−3 + 2p)(v0 + v1) + 3(u0v0 + u1v1)).

In addition, let

θ =

⎛
⎜
⎜
⎜
⎜
⎝

θ1

θ2

0

⎞
⎟
⎟
⎟
⎟
⎠

(11)

with

θ1 = a((1 − p) −
3
4
(u0 + u1)),

θ2 =

√
3a
4
(v0 + v1).

Theorem III.2. For the RWI, we have the asymptotic normality

1
√

n
(Sn − nμ) L

ÐÐ→𝒩 (0, Γ), (12)

where the covariance matrix Γ is given by Γ = σ2 if p = 1, whereas if 0 ≤ p < 1,

Γ = σ2
− (

p
1 − p

)θθT . (13)
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Our third result deals with the strong law of large numbers for the random walk on graphite structure. Denote by μ and m the mean
vectors

μ =

⎛
⎜
⎜
⎜
⎜
⎝

μ1

μ2

μ3

⎞
⎟
⎟
⎟
⎟
⎠

and m =

⎛
⎜
⎜
⎜
⎜
⎝

m1

m2

m3

⎞
⎟
⎟
⎟
⎟
⎠

(14)

with

μ1 =
3a
8
(−(u0,0 + u0,1) + (u1,0 + u1,1)),

μ2 =
a
√

3
8
((v0,0 + v0,1) − (v1,0 + v1,1)),

μ3 =
hp
2
(2α − 1)

and

m1 =
3a
8
(−(u0,0 − u0,1) + (u1,0 − u1,1)),

m2 =
a
√

3
8
((v0,0 − v0,1) − (v1,0 − v1,1)),

m3 =
hp
2
(2α − 1),

where for i, j = 0, 1, ui,j = pi,j,1 + pi,j,2 and vi,j = pi,j,1 − pi,j,2. For the sake of clarity, we have chosen to keep the same notation for the mean vector
μ in both hexagonal structures. We shall also make use of the vectors θ and ρ defined by

θ =

⎛
⎜
⎜
⎜
⎜
⎝

θ1

θ2

0

⎞
⎟
⎟
⎟
⎟
⎠

and ρ =

⎛
⎜
⎜
⎜
⎜
⎝

ρ1

ρ2

0

⎞
⎟
⎟
⎟
⎟
⎠

(15)

with

θ1 = a((1 −
p
2
) −

3
8
((u0,0 + u0,1) + (u1,0 + u1,1))),

θ2 =
a
√

3
8
((v0,0 + v0,1) + (v1,0 + v1,1)),

ρ1 = a(−
p
2
−

3
8
((u0,0 − u0,1) + (u1,0 − u1,1))),

ρ2 =
a
√

3
8
((v0,0 − v0,1) + (v1,0 − v1,1)).

Theorem III.3. For the RWG with p > 0, we have the almost sure convergence

lim
n→∞

1
n

Sn = μ + (
p

2 − p
)m a.s. (16)

More precisely,

∥
1
n

Sn − μ − (
p

2 − p
)m∥

2

= O(
log n

n
) a.s. (17)

Remark III.1. In the special case where p = 0, the limiting value in and (17) changes to μ + ρ,

lim
n→∞

1
n

Sn = μ + ρ a.s. (18)
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and

∥
1
n

Sn − μ − ρ∥
2
= O(

log n
n
) a.s. (19)

If we denote u0 = u0,0, u1 = u1,1 and v0 = v0,0, v1 = v1,1, one can immediately see that the almost sure convergences and (18) are, of course, the
same in the case p = 0.

Our fourth result is dedicated to the asymptotic normality for the random walk on the graphene. To this end, let

ζ =

⎛
⎜
⎜
⎜
⎜
⎝
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⎟
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⎟
⎠

. (20)

Moreover, denote
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=
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⎜
⎜
⎜
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3

⎞
⎟
⎟
⎟
⎟
⎠
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⎛
⎜
⎜
⎜
⎜
⎝

γ1 γ4 γ6

γ4 γ2 γ5

γ6 γ5 γ3

⎞
⎟
⎟
⎟
⎟
⎠

, (21)

where

σ2
1 =

a2

4
(2p(1 − p) +

9
4
(s0,0 + s1,0 + s0,1 + s1,1) − 3p(u0,0 + u1,0)),

σ2
2 =

3a2

16
((u0,0 + u1,0 + u0,1 + u1,1) − (v2

0,0 + v2
1,0 + v2

0,1 + v2
1,1)),

σ2
3 =

h2p
2
(1 − p(2α − 1)2

),

σ1,2 =
a2√3

16
(3(t0,0 + t1,0 + t0,1 + t1,1) + 2p(v0,0 + v1,0)),

σ2,3 =
−ah
√

3
8
(p(2α − 1)(v0,0 + v1,0)),

σ1,3 =
ah
8
(−4p(1 − p)(2α − 1) + 3p(2α − 1)(u0,0 + u1,0))

and

γ1 =
a2

4
(2p(1 − p) +

9
4
(s0,0 + s1,0 − s0,1 − s1,1) − 3p(u0,0 + u1,0)),

γ2 =
3a2

16
((u0,0 + u1,0 − u0,1 − u1,1) − (v2

0,0 + v2
1,0 − v2

0,1 − v2
1,1)),

γ3 =
h2p

2
(1 − p(2α − 1)2

),

γ4 =
a2√3

16
(3(t0,0 + t1,0 − t0,1 − t1,1) + 2p(v0,0 + v1,0)),

γ5 =
−ah
√

3
8
(p(2α − 1)(v0,0 + v1,0)),

γ6 =
ah
8
(−4p(1 − p)(2α − 1) + 3p(2α − 1)(u0,0 + u1,0)),

with for all i = 0, 1 and j = 0, 1, si,j = ui,j(1 − ui,j) and ti,j = vi,j(ui,j − 1).

Theorem III.4. For the RWG with p > 0, we have the asymptotic normality

1
√

n
(Sn − nμ − n(

p
2 − p

)m) L
ÐÐ→𝒩 (0, Γ), (22)

J. Math. Phys. 62, 103303 (2021); doi: 10.1063/5.0051731 62, 103303-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where the covariance matrix Γ is given by

Γ = σ2
+

p
2 − p

γ +
2

(2 − p)2 ((ζ − pμ)mT
+m(ζ − pμ)T

) −
4p

(2 − p)3 mmT
+

2
2 − p

(θρT
+ ρθT

) +
4

p(2 − p)
ρρT . (23)

Remark III.2. In the special case where p = 0, we find that

1
√

n
(Sn − n(μ + ρ)) L

ÐÐ→𝒩 (0, σ2
+ δ), (24)

where the matrix δ is defined in (61). One can also observe that the asymptotic variances in (12) and (24) coincide in the case p = 0.

IV. PROOFS FOR THE RWI

Proof of Theorem III.1. In order to prove the almost sure convergence (8), denote by (ξn) the increments of the RWI. Then, the position
of the RWI is given, for all n ≥ 0, by

Sn+1 = Sn + ξn+1 =
n+1

∑
k=1

ξk, (25)

where

ξn+1 =

⎛
⎜
⎜
⎜
⎜
⎝

Xn+1 − Xn

Yn+1 − Yn

Zn+1 − Zn

⎞
⎟
⎟
⎟
⎟
⎠

.

Let (ℱ n) be the natural filtration associated with the RWI, that is, ℱ n = σ(ξ1, . . . , ξn). We have for all n ≥ 0, E[ξn+1∣ℱ n] = E[ξn+1∣Sn
∈ 𝒱 0]𝟙Sn∈𝒱 0

+ E[ξn+1∣Sn ∈ 𝒱 1]𝟙Sn∈𝒱 1
. Hence, it follows from (1)–(3) that

E[ξn+1∣ℱ n] =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a(p0,0 −
1
2
(p0,1 + p0,2))

a
√

3
2
(p0,1 − p0,2)

hp(2α − 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0
+

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a(−p1,0 +
1
2
(p1,1 + p1,2))

a
√

3
2
(p1,2 − p1,1)

hp(2α − 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1
.

For i = 0, 1, denote ui = pi,1 + pi,2 and vi = pi,1 − pi,2. We clearly have for i = 0, 1, pi,0 = 1 − p − ui. Consequently, E[ξn+1∣ℱ n] reduces to

E[ξn+1∣ℱ n] = (μ + θ)𝟙Sn∈𝒱 0
+ (μ − θ)𝟙Sn∈𝒱 1

= μ + θεn, (26)

where εn stands for the random variable,
εn = 𝟙Sn∈𝒱 0

− 𝟙Sn∈𝒱 1
(27)

and the vectors μ and θ are given by (7) and (11). Moreover, we have for all n ≥ 0, E[ξn+1ξT
n+1∣ℱ n] = E[ξn+1ξT

n+1∣Sn ∈ 𝒱 0]𝟙Sn∈𝒱 0

+ E[ξn+1ξT
n+1∣Sn ∈ 𝒱 1]𝟙Sn∈𝒱 1

. We obtain once again from (1)–(3) that

E[ξn+1ξT
n+1∣ℱ n] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
(p0,0 +

1
4
(p0,1 + p0,2)) −

a2√3
4
(p0,1 − p0,2) 0

−
a2√3

4
(p0,1 − p0,2)

3a2

4
(p0,1 + p0,2) 0

0 0 h2p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
(p1,0 +

1
4
(p1,1 + p1,2)) −

a2√3
4
(p1,1 − p1,2) 0

−
a2√3

4
(p1,1 − p1,2)

3a2

4
(p1,1 + p1,2) 0

0 0 h2p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1
.
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It implies that

E[ξn+1ξT
n+1∣ℱ n] = (σ2

+ ν + (μ + θ)(μ + θ)T
)𝟙Sn∈𝒱 0

+ (σ2
− ν + (μ − θ)(μ − θ)T

)𝟙Sn∈𝒱 1
,

= (σ2
+ μμT

+ θθT
) + (ν + μθT

+ θμT
)εn, (28)

where the covariance matrix σ2 and the random variable εn are, respectively, given by (10) and (27), while the deterministic matrix ν is
defined by

ν =

⎛
⎜
⎜
⎜
⎜
⎝

ν1 ν3 0

ν3 ν2 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

with

ν1 =
3a2

8
(u0 − u1)(3 − 4p − 3(u0 + u1)),

ν2 =
3a2

8
(u0 − u1 − v2

0 + v2
1),

ν3 =
a2√3

8
((−3 + 2p)(v0 − v1) + 3(u0v0 − u1v1)).

Hereafter, we have the martingale decomposition

Sn =
n

∑
k=1
(ξk − E[ξk∣ℱ k−1]) +

n

∑
k=1

E[ξk∣ℱ k−1] =Mn + Rn, (29)

where (Mn) is the locally square integrable martingale given by

Mn =
n

∑
k=1
(ξk − E[ξk∣ℱ k−1]) (30)

and the centering term

Rn =
n

∑
k=1

E[ξk∣ℱ k−1]. (31)

The predictable quadratic variation8 associated with (Mn) is the random matrix given, for all n ≥ 1, by

⟨M⟩n =
n

∑
k=1
(E[ξkξT

k ∣ℱ k−1] − E[ξk∣ℱ k−1]E[ξk∣ℱ k−1]
T
).

It follows from (26) and (28) that

⟨M⟩n =
n

∑
k=1
((σ2

+ μμT
+ θθT

) + (ν + μθT
+ θμT

)εk−1 − (μ + θεk−1)(μ + θεk−1)
T
),

which reduces to
⟨M⟩n = nσ2

+ In−1ν, (32)

where

In =
n

∑
k=0

εk.

Furthermore, we clearly have for all n ≥ 0,

E[εn+1∣ℱ n] = E[εn+1∣Sn ∈ 𝒱 0]𝟙Sn∈𝒱 0
+ E[εn+1∣Sn ∈ 𝒱 1]𝟙Sn∈𝒱 1

,
= (2p − 1)𝟙Sn∈𝒱 0

+ (1 − 2p)𝟙Sn∈𝒱 1
,

= (2p − 1)εn. (33)
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Consequently, we obtain the second martingale decomposition

In =
n

∑
k=0

εk = 1 +
n

∑
k=1
(εk − E[εk∣ℱ k−1]) +

n

∑
k=1

E[εk∣ℱ k−1]

= 1 +Nn +
n

∑
k=1
(2p − 1)εk−1 = 1 +Nn + (2p − 1)In−1, (34)

where Nn is the locally square integrable martingale given by

Nn =
n

∑
k=1
(εk − E[εk∣ℱ k−1]). (35)

We deduce from (33) that the predictable quadratic variation associated with (Nn) is given by

⟨N⟩n =
n

∑
k=1
(E[ε2

k∣ℱ k−1] − E
2
[εk∣ℱ k−1])

= n −
n

∑
k=1
(2p − 1)2ε2

k−1 = 4p(1 − p)n. (36)

Therefore, we immediately obtain that

lim
n→∞

1
n
⟨N⟩n = 4p(1 − p) a.s. (37)

One can also observe that the increments of the martingale (Nn) are bounded by 2. Hence, by virtue of the strong law of large numbers for
martingales,

lim
n→∞

1
n

Nn = 0 a.s. (38)

More precisely, it follows from the last part of Theorem 1.3.24 in (8) that

N2
n = O(n log n) a.s. (39)

However, we infer from (34) together with the definition of In that

2(1 − p)In = 1 +Nn − (2p − 1)εn.

Consequently, if p < 1, we obtain from (38) that

lim
n→∞

1
n

In = 0 a.s. (40)

In addition, (39) clearly leads to
I2

n = O(n log n) a.s. (41)

Then, we find from (32) together with (40) that

lim
n→∞

1
n
⟨M⟩n = σ2 a.s. (42)

In the special case where p = 1, we easily see that θ = 0 and ν = 0, and thus, (42) still holds. Therefore, in both cases, we obtain from the strong
law of large numbers for martingales that

lim
n→∞

1
n

Mn = 0 a.s. (43)

More precisely, one can observe that the increments of (Mn) are almost surely bounded. Hence, by examining each component of the
martingale (Mn), it follows once again from the last part of Theorem 1.3.24 in (8) that

∥Mn∥
2
= O(n log n) a.s. (44)

The centering term Rn is much more easy to handle. As a matter of fact, we have from (26) and (31) that Rn = nμ + In−1θ. Then, (29) implies
that

Sn =Mn + nμ + In−1θ. (45)
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Finally, if p < 1, we immediately deduce from (45) together with (43) and (40) that

lim
n→∞

1
n

Sn = μ a.s. (46)

More precisely, (39) together with (41) ensure that

∥
1
n

Sn − μ∥
2
= O(

log n
n
) a.s., (47)

which completes the proof of Theorem III.1. ◻

Proof of Theorem III.2. The proof of Theorem III.2 relies on the central limit theorem for multi-dimensional martingales given, e.g., by
Corollary 2.1.10 in (8). In the special case where p = 1, we clearly have θ = 0 and ν = 0, which implies from (32) that ⟨M⟩n = nσ2, and the
asymptotic normality trivially holds as

1
√

n
(Sn − nμ) =

1
√

n
Mn.

Hereafter, we assume that the parameter 0 ≤ p < 1. Let (ℳ n) be the martingale with values in R4, given by

ℳ n =
⎛
⎜
⎝

Mn

Nn

⎞
⎟
⎠

,

where Mn and Nn were previously defined in (30) and (35), respectively. Its predictable quadratic variation ⟨ℳ ⟩n can be split into four
terms as

⟨ℳ ⟩n =
⎛
⎜
⎝

⟨M⟩n ⟨C⟩n

⟨C⟩Tn ⟨N⟩n

⎞
⎟
⎠

,

where ⟨M⟩n and ⟨N⟩n have been previously calculated in (32) and (36), while

⟨C⟩n =
n

∑
k=1
(E[ξkεk∣ℱ k−1] − E[ξk∣ℱ k−1]E[εk∣ℱ k−1]).

As before, we have for all n ≥ 0, E[ξn+1εn+1∣ℱ n] = E[ξn+1εn+1∣Sn ∈ 𝒱 0]𝟙Sn∈𝒱 0
+ E[ξn+1εn+1∣Sn ∈ 𝒱 1]𝟙Sn∈𝒱 1

. Hence, we get from (1)–(3) that

E[ξn+1εn+1∣ℱ n] =
1

∑
i,j=0
(−1)iE[ξn+1𝟙Sn+1∈𝒱 i

∣Sn ∈ 𝒱 j]𝟙Sn∈𝒱 j
,

=
1

∑
j=0
(−1)j

(2E[ξn+1𝟙Sn+1∈𝒱 j
∣Sn ∈ 𝒱 j]𝟙Sn∈𝒱 j

− E[ξn+1∣Sn ∈ 𝒱 j]𝟙Sn∈𝒱 j
).

It clearly leads to

E[ξn+1εn+1∣ℱ n] = (2ζ − E[ξn+1∣ℱ n])εn, (48)

where

ζ =

⎛
⎜
⎜
⎜
⎜
⎝

0

0

hp(2α − 1)

⎞
⎟
⎟
⎟
⎟
⎠

.
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Therefore, we deduce from (26), (33), and (48) that

⟨C⟩n =
n

∑
k=1
((2ζ − E[ξk∣ℱ k−1])εk−1 − E[ξk∣ℱ k−1](2p − 1)εk−1),

=
n

∑
k=1
((2ζ − μ − θεk−1)εk−1 − (2p − 1)(μ + θεk−1)εk−1),

=
n

∑
k=1
(2(ζ − pμ)εk−1 − 2pθε2

k−1),

which implies that
⟨C⟩n = −2npθ + 2(ζ − pμ)In−1.

Consequently, we immediately obtain from (40) that

lim
n→∞

1
n
⟨C⟩n = −2pθ a.s. (49)

Hence, it follows from the conjunction of (37), (42), and (49) that

lim
n→∞

1
n
⟨ℳ ⟩n = Λ =

⎛
⎜
⎝

σ2
−2pθ

−2pθT 4p(1 − p)

⎞
⎟
⎠

a.s. (50)

In addition, we already saw that the increments of the martingale (ℳ n) are almost surely bounded, which ensures that Lindeberg’s condition
is satisfied. Hence, we deduce from Corollary 2.1.10 in (8) the asymptotic normality

1
√

n
ℳ n

L
ÐÐ→𝒩 (0, Λ). (51)

Since p ≠ 1, we get from (34) that In = 1 +Nn + (2p − 1)In−1, which implies that In−1 + εn = 1 +Nn + (2p − 1)In−1, leading to

In−1 =
1 +Nn − εn

2(1 − p)
.

Consequently, we have from (45) that
Sn − nμ =Mn + In−1θ =Mn +Nnθp + (1 − εn)θp, (52)

where
θp =

1
2(1 − p)

θ.

The rest of the proof relies on identity (52) together with the well-known Cramér–Wold theorem given, e.g., by Theorem 29.4 in (2). We
clearly obtain from (52) that for all u ∈ R3,

1
√

n
uT
(Sn − nμ) =

1
√

n
vTℳ n +

(1 − εn)
√

n
uTθp, (53)

where

v =
⎛
⎜
⎝

u

θT
p u

⎞
⎟
⎠

.

On the one hand, it follows from (51) that
1
√

n
vTℳ n

L
ÐÐ→𝒩 (0, vTΛv). (54)

On the other hand, as (1 − εn) ∈ {0, 2}, we immediately have

lim
n→∞

(1 − εn)
√

n
= 0 a.s. (55)
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Consequently, we deduce from (53) together with (54) and (55) that

1
√

n
uT
(Sn − nμ) L

Ð→𝒩 (0, vTΛv). (56)

However, we can easily see from (50) that

vTΛv = uTσ2u − 4puTθθT
p u + 4p(1 − p)uTθpθT

p u = uTΓu,

where

Γ = σ2
− 4pθθT

p + 4p(1 − p)θpθT
p = σ2

− (
p

1 − p
)θθT .

Finally, we find from (56) and the Cramér–Wold theorem that

1
√

n
(Sn − nμ) L

Ð→𝒩 (0, Γ), (57)

which completes the proof of Theorem III.2. ◻

V. PROOFS FOR THE RWG

Proof of Theorem III.3. As in the proof of Theorem III.1, denote by (ξn) the increments of the RWG. Then, the position of the RWG is
given, for all n ≥ 0, by

Sn+1 = Sn + ξn+1, (58)

where

ξn+1 =

⎛
⎜
⎜
⎜
⎜
⎝

Xn+1 − Xn

Yn+1 − Yn

Zn+1 − Zn

⎞
⎟
⎟
⎟
⎟
⎠

.

Let (ℱ n) be the natural filtration associated with the RWG, that is, ℱ n = σ(ξ1, . . . , ξn). We have for all n ≥ 0,

E[ξn+1∣ℱ n] =
1

∑
i=0

1

∑
j=0

E[ξn+1∣Sn ∈ 𝒱 i,j]𝟙Sn∈𝒱 i,j
.

For i, j = 0, 1, denote ui,j = pi,j,1 + pi,j,2 and vi,j = pi,j,1 − pi,j,2. Hence, it follows from (4)–(6) that

E[ξn+1∣ℱ n] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a((1 − p) −
3
2

u0,0)

a
√

3
2

v0,0

hp(2α − 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0,0
+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(−(1 − p) +
3
2

u1,0)

−
a
√

3
2

v1,0

hp(2α − 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1,0
+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(1 −
3
2

u0,1)

a
√

3
2

v0,1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0,1

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(−1 +
3
2

u1,1)

−
a
√

3
2

v1,1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1,1
.

This time, it is necessary to introduce three random variables to discriminate the different vertices. More precisely, let

in = 𝟙Sn∈𝒱 0,0∪𝒱 0,1
− 𝟙Sn∈𝒱 1,0∪𝒱 1,1

,

jn = 𝟙Sn∈𝒱 0,0∪𝒱 1,0
− 𝟙Sn∈𝒱 0,1∪𝒱 1,1

,

kn = 𝟙Sn∈𝒱 0,0∪𝒱 1,1
− 𝟙Sn∈𝒱 0,1∪𝒱 1,0

.
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The variable in keeps track of the local horizontal geometry, while jn depends on whether or not the particle can jump vertically and kn only
depends on the altitude of the particle. Then, E[ξn+1∣ℱ n] reduces to

E[ξn+1∣ℱ n] = (μ + θ +m + ρ)𝟙Sn∈𝒱 0,0
+ (μ − θ +m − ρ)𝟙Sn∈𝒱 1,0

+ (μ + θ −m − ρ)𝟙Sn∈𝒱 0,1
+ (μ − θ −m + ρ)𝟙Sn∈𝒱 1,1

,

= μ + θin +mjn + ρkn, (59)

where the vectors μ, m and θ, ρ are previously defined in (14) and (15) Moreover, we also have for all n ≥ 0,

E[ξn+1ξT
n+1∣ℱ n] =

1

∑
i=0

1

∑
j=0

E[ξn+1ξT
n+1∣Sn ∈ 𝒱 i,j]𝟙Sn∈𝒱 i,j

.

Hence, we obtain once again from (4)–(6) that

E[ξn+1ξT
n+1∣ℱ n] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
((1 − p) −

3
4

u0,0) −
a2√3

4
v0,0 0

−
a2√3

4
v0,0

3a2

4
u0,0 0

0 0 h2p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0,0
+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
((1 − p) −

3
4

u1,0) −
a2√3

4
v1,0 0

−
a2√3

4
v1,0

3a2

4
u1,0 0

0 0 h2p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1,0

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
(1 −

3
4

u0,1) −
a2√3

4
v0,1 0

−
a2√3

4
v0,1

3a2

4
u0,1 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 0,1
+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
(1 −

3
4

u1,1) −
a2√3

4
v1,1 0

−
a2√3

4
v1,1

3a2

4
u1,1 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝟙Sn∈𝒱 1,1
.

It implies that

E[ξn+1ξT
n+1∣ℱ n] = (σ2

+ ν + γ + δ + (μ + θ +m + ρ)(μ + θ +m + ρ)T
)𝟙Sn∈𝒱 0,0

+ (σ2
− ν + γ − δ + (μ − θ +m − ρ)(μ − θ +m − ρ)T

)𝟙Sn∈𝒱 1,0

+ (σ2
+ ν − γ − δ + (μ + θ −m − ρ)(μ + θ −m − ρ)T

)𝟙Sn∈𝒱 0,1

+ (σ2
− ν − γ + δ + (μ − θ −m + ρ)(μ − θ −m + ρ)T

)𝟙Sn∈𝒱 1,1
,

= (σ2
+ μμT

+ θθT
+mmT

+ ρρT
) + (ν + μθT

+ θμT
+mρT

+ ρmT
)in

+ (γ + μmT
+mμT

+ θρT
+ ρθT

)jn + (δ + μρT
+ ρμT

+ θmT
+mθT

)kn, (60)

where the matrices σ2 and γ are given by (21), while the matrices ν and δ are defined by

ν =

⎛
⎜
⎜
⎜
⎜
⎝

ν1 ν4 ν6

ν4 ν2 ν5

ν6 ν5 0

⎞
⎟
⎟
⎟
⎟
⎠

and δ =

⎛
⎜
⎜
⎜
⎜
⎝

δ1 δ4 δ6

δ4 δ2 δ5

δ6 δ5 0

⎞
⎟
⎟
⎟
⎟
⎠

(61)

with

ν1 =
a2

4
(

9
4
(s0,0 − s1,0 + s0,1 − s1,1) − 3p(u0,0 − u1,0)),

ν2 =
3a2

16
((u0,0 − u1,0 + u0,1 − u1,1) − (v2

0,0 − v2
1,0 + v2

0,1 − v2
1,1)),

ν4 =
a2√3

16
(3(t0,0 − t1,0 + t0,1 − t1,1) + 2p(v0,0 − v1,0)),

ν5 =
−ah
√

3
8
(p(2α − 1)(v0,0 − v1,0)),

ν6 =
ah
8
(3p(2α − 1)(u0,0 − u1,0))
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and

δ1 =
a2

4
(

9
4
(s0,0 − s1,0 − s0,1 + s1,1) − 3p(u0,0 − u1,0)),

δ2 =
3a2

16
((u0,0 − u1,0 − u0,1 + u1,1) − (v2

0,0 − v2
1,0 − v2

0,1 + v2
1,1)),

δ4 =
a2√3

16
(3(t0,0 − t1,0 − t0,1 + t1,1) + 2p(v0,0 − v1,0)),

δ5 =
−ah
√

3
8
(p(2α − 1)(v0,0 − v1,0)),

δ6 =
ah
8
(3p(2α − 1)(u0,0 − u1,0)),

where for all i = 0, 1 and j = 0, 1, si,j = ui,j(1 − ui,j) and ti,j = vi,j(ui,j − 1). Therefore, we have the martingale decomposition

Sn =
n

∑
ℓ=1
(ξℓ − E[ξℓ∣ℱ ℓ−1]) +

n

∑
ℓ=1

E[ξℓ∣ℱ ℓ−1] =Mn + Rn, (62)

where (Mn) is the locally square integrable martingale given by

Mn =
n

∑
ℓ=1
(ξℓ − E[ξℓ∣ℱ ℓ−1]) (63)

and the centering term

Rn =
n

∑
ℓ=1

E[ξℓ∣ℱ ℓ−1].

The predictable quadratic variation associated with (Mn) is given by

⟨M⟩n =
n

∑
ℓ=1
(E[ξℓξT

ℓ ∣ℱ ℓ−1] − E[ξℓ∣ℱ ℓ−1]E[ξℓ∣ℱ ℓ−1]
T
).

We infer from (59) and (60) that

⟨M⟩n =
n

∑
ℓ=1
((σ2

+ μμT
+ θθT

+mmT
+ ρρT

) + (ν + μθT
+ θμT

+mρT
+ ρmT

)iℓ−1 + (γ + μmT
+mμT

+ θρT
+ ρθT

)jℓ−1

+ (δ + μρT
+ ρμT

+ θmT
+mθT

)kℓ−1 − (μ + θiℓ−1 +mjℓ−1 + ρkℓ−1)(μ + θiℓ−1 +mjℓ−1 + ρkℓ−1)
T
).

However, it is not hard to see that for all n ≥ 0, i2
n = 1, j2

n = 1, k2
n = 1 as well as injn = kn, jnkn = in, and inkn = jn. Consequently,

⟨M⟩n =
n

∑
ℓ=1
(σ2
+ νiℓ−1 + γjℓ−1 + δkℓ−1),

which reduces to
⟨M⟩n = nσ2

+ In−1ν + Jn−1γ + Kn−1δ, (64)

where

In =
n

∑
ℓ=0

iℓ, Jn =
n

∑
ℓ=0

jℓ, Kn =
n

∑
ℓ=0

kℓ.

Furthermore, we clearly have by construction that for all n ≥ 0, in = (−1)n, which implies that

In =

⎧⎪⎪
⎨
⎪⎪⎩

1 if n is even,

0 if n is odd.
(65)
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In addition, we also have from (4)–(6) that for all n ≥ 0,

E[jn+1∣ℱ n] = (2p − 1)𝟙Sn∈𝒱 0,0
+ (2p − 1)𝟙Sn∈𝒱 1,0

+ 𝟙Sn∈𝒱 0,1
+ 𝟙Sn∈𝒱 1,1

(66)

= 2p(𝟙Sn∈𝒱 0,0
+ 𝟙Sn∈𝒱 1,0

) − jn

= p − (1 − p)jn. (67)

In a similar way, we have for all n ≥ 0,

E[kn+1∣ℱ n] = (1 − 2p)𝟙Sn∈𝒱 0,0
+ (2p − 1)𝟙Sn∈𝒱 1,0

− 𝟙Sn∈𝒱 0,1
+ 𝟙Sn∈𝒱 1,1

(68)

= −2p(𝟙Sn∈𝒱 0,0
− 𝟙Sn∈𝒱 1,0

) + kn

= (1 − p)kn − pin. (69)

Consequently, we obtain two more martingale decompositions

Jn =
n

∑
ℓ=0

jℓ = 1 +
n

∑
ℓ=1
(jℓ − E[jℓ∣ℱ ℓ−1]) +

n

∑
ℓ=1

E[jℓ∣ℱ ℓ−1]

= 1 +NJ
n +

n

∑
ℓ=1
(p − (1 − p)jℓ−1)

= 1 +NJ
n + np − (1 − p)Jn−1, (70)

Kn =
n

∑
ℓ=0

kℓ = 1 +
n

∑
ℓ=1
(kℓ − E[kℓ∣ℱ ℓ−1]) +

n

∑
ℓ=1

E[kℓ∣ℱ ℓ−1]

= 1 +NK
n +

n

∑
ℓ=1
((1 − p)kℓ−1 − piℓ−1)

= 1 +NK
n + (1 − p)Kn−1 − pIn−1, (71)

where NJ
n and NK

n are the locally square integrable martingales given by

NJ
n =

n

∑
ℓ=1
(jℓ − E[jℓ∣ℱ ℓ−1]), (72)

NK
n =

n

∑
ℓ=1
(kℓ − E[kℓ∣ℱ ℓ−1]). (73)

We already saw that for all n ≥ 0, i2
n = 1, j2

n = 1, k2
n = 1, and inkn = jn. Hence, we have from (67) and (69) that the predictable quadratic variations

associated with (NJ
n) and (NK

n ) are, respectively, given by

⟨NJ
⟩n =

n

∑
ℓ=1
(2p(1 − p)(1 + jℓ−1)) = 2p(1 − p)(n + Jn−1), (74)

⟨NK
⟩n =

n

∑
ℓ=1
(2p(1 − p)(1 + iℓ−1kℓ−1)) = 2p(1 − p)(n + Jn−1). (75)

It clearly ensures that ⟨NJ
⟩n and ⟨NK

⟩n are both bounded by 4np(1 − p) almost surely, which immediately implies that

lim
n→∞

1
n

NJ
n = 0 and lim

n→∞

1
n

NK
n = 0 a.s.

However, we have from (70) and (71) that

(2 − p)Jn = 1 +NJ
n + np − (1 − p)jn,

pKn = 1 +NK
n − (1 − p)kn − pIn−1.
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It allows us to deduce that in the case p > 0,

lim
n→∞

1
n

In = 0, lim
n→∞

1
n

Jn =
p

2 − p
, lim

n→∞

1
n

Kn = 0 a.s. (76)

Therefore, it follows from the conjunction (74)–(76) that

lim
n→∞

1
n
⟨NJ
⟩n =

4p(1 − p)
2 − p

, lim
n→∞

1
n
⟨NK
⟩n =

4p(1 − p)
2 − p

a.s. (77)

One can also observe that the increments of the martingales (NJ
n) and (NK

n ) are bounded by 2. Hence, the strong law of large numbers for
martingales given in the last part of Theorem 1.3.24 in (8) implies that

(NJ
n)

2
= O(n log n) a.s., (78)

which ensures that

(
Jn

n
−

p
2 − p

)

2

= O(
log n

n
) a.s. (79)

In addition, we also have

(NK
n )

2
= O(n log n) a.s. (80)

Hereafter, we find from (64) that

lim
n→∞

1
n
⟨M⟩n = σ2

+ (
p

2 − p
)γ a.s. (81)

Consequently, we obtain from the strong law of large numbers for martingales that

lim
n→∞

1
n

Mn = 0 a.s. (82)

More precisely, by examining each component of the martingale (Mn), it follows from the last part of Theorem 1.3.24 in (8) that

∥Mn∥
2
= O(n log n) a.s. (83)

As in the proof of Theorem III.1, Rn is much more easy to handle. It follows from (59) that Rn = nμ + In−1θ + Jn−1m + Kn−1ρ. Then, we infer
from (62) that

Sn =Mn + nμ + In−1θ + Jn−1m + Kn−1ρ. (84)

Finally, we immediately deduce from (84) together with (76) and (82) that

lim
n→∞

1
n

Sn = μ + (
p

2 − p
)m a.s.

More precisely, we find from (79) and (83) that

∥
1
n

Sn − μ − (
p

2 − p
)m∥

2

= O(
log n

n
) a.s., (85)

which achieves the proof of Theorem III.3 when p > 0. In the special case where p = 0, we have Jn = In and Kn = n for every n ≥ 1. Thus, (76)
changes to

lim
n→∞

1
n

In = 0, lim
n→∞

1
n

Jn = 0, lim
n→∞

1
n

Kn = 1 a.s., (86)

which implies that

lim
n→∞

1
n
⟨M⟩n = σ2

+ δ a.s. (87)
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Therefore (82) and (83) still hold, and we get from (82), (84), and (86) that

lim
n→∞

1
n

Sn = μ + ρ a.s.

More precisely,

∥
1
n

Sn − μ − ρ∥
2
= O(

log n
n
) a.s.,

which achieves the proof in the special case p = 0. ◻

Proof of Theorem III.4. We shall once again make use of the central limit theorem for multi-dimensional martingales given, e.g., by
Corollary 2.1.10 in (8). In the special case where p = 0, we obtain with (87) that

1
√

n
Mn

L
Ð→𝒩 (0, σ2

+ δ),

and we immediately get from (84) that

1
√

n
(Sn − n(μ + ρ)) L

Ð→𝒩 (0, σ2
+ δ). (88)

Hereafter, we assume that the parameter p > 0. Let (ℳ n) be the martingale with values in R5, given by

ℳ n =

⎛
⎜
⎜
⎜
⎜
⎝

Mn

NJ
n

NK
n

⎞
⎟
⎟
⎟
⎟
⎠

,

where Mn, NJ
n, and NK

n were previously defined in (63), (72), and (73). Its predictable quadratic variation ⟨ℳ ⟩n can be split into nine terms as

⟨ℳ ⟩n =

⎛
⎜
⎜
⎜
⎜
⎝

⟨M⟩n ⟨C⟩n ⟨E⟩n

⟨C⟩Tn ⟨NJ
⟩n ⟨D⟩n

⟨E⟩Tn ⟨D⟩n ⟨NK
⟩n

⎞
⎟
⎟
⎟
⎟
⎠

,

where ⟨M⟩n, ⟨NJ
⟩n, and ⟨NK

⟩n have been previously calculated in (64), (74), and (75), while

⟨C⟩n =
n

∑
ℓ=1
(E[ξℓjℓ∣ℱ ℓ−1] − E[ξℓ∣ℱ ℓ−1]E[jℓ∣ℱ ℓ−1]),

⟨D⟩n =
n

∑
ℓ=1
(E[jℓkℓ∣ℱ ℓ−1] − E[jℓ∣ℱ ℓ−1]E[kℓ∣ℱ ℓ−1]),

⟨E⟩n =
n

∑
ℓ=1
(E[ξℓkℓ∣ℱ ℓ−1] − E[ξℓ∣ℱ ℓ−1]E[kℓ∣ℱ ℓ−1]).

For all n ≥ 0, we get from (4)–(6) that

E[ξn+1jn+1∣ℱ n] = E[ξn+1𝟙jn+1=jn ∣ℱ n]jn − E[ξn+1𝟙jn+1≠jn ∣ℱ n]jn

= 2E[ξn+1𝟙jn+1=jn ∣ℱ n]jn − E[ξn+1∣ℱ n]jn

= 2(𝟙Sn∈𝒱 0,0
+ 𝟙Sn∈𝒱 1,0

)ζ − E[ξn+1∣ℱ n]jn

= (1 + jn)ζ − E[ξn+1∣ℱ n]jn, (89)
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where ζ is defined in (20). Therefore, we deduce from (59), (67), and (89) that

⟨C⟩n =
n

∑
ℓ=1
((1 + jℓ−1)ζ − E[ξℓ∣ℱ ℓ−1]jℓ−1 − E[ξℓ∣ℱ ℓ−1](p − (1 − p)jℓ−1))

=
n

∑
ℓ=1
((1 + jℓ−1)ζ − p(1 + jℓ−1)E[ξℓ∣ℱ ℓ−1])

=
n

∑
ℓ=1
((ζ − p(μ +m))(1 + jℓ−1) − p(θ + ρ)(iℓ−1 + kℓ−1)),

which implies that
⟨C⟩n = (ζ − p(μ +m))(n + Jn−1) − p(θ + ρ)(In−1 + Kn−1).

Hence, it follows from (76) that

lim
n→∞

1
n
⟨C⟩n = (

2
2 − p

)(ζ − p(μ +m)) a.s. (90)

In a similar way, we infer from (4)–(6) that for all n ≥ 0,

E[ξn+1kn+1∣ℱ n] = E[ξn+1𝟙kn+1=kn ∣ℱ n]kn − E[ξn+1𝟙kn+1≠kn ∣ℱ n]kn

= E[ξn+1∣ℱ n]kn − 2E[ξn+1𝟙kn+1≠kn ∣ℱ n]kn

= E[ξn+1∣ℱ n]kn − 2(𝟙Sn∈𝒱 0,0
+ 𝟙Sn∈𝒱 1,0

)knζ

= E[ξn+1∣ℱ n]kn − (in + kn)ζ. (91)

Consequently, we find from (59), (69), and (91) that

⟨E⟩n =
n

∑
ℓ=1
(E[ξℓ∣ℱ ℓ−1]kℓ−1 − (iℓ−1 + kℓ−1)ζ − E[ξℓ∣ℱ ℓ−1]((1 − p)kℓ−1 − piℓ−1))

=
n

∑
ℓ=1
(−ζ(iℓ−1 + kℓ−1) + p(iℓ−1 + kℓ−1)E[ξℓ∣ℱ ℓ−1])

=
n

∑
ℓ=1
((p(μ +m) − ζ)(iℓ−1 + kℓ−1) + p(θ + ρ)(1 + jℓ−1)),

which leads to
⟨E⟩n = (p(μ +m) − ζ)(In−1 + Kn−1) + p(θ + ρ)(n + Jn−1).

Therefore, (76) implies that

lim
n→∞

1
n
⟨E⟩n = (

2p
2 − p

)(θ + ρ) a.s. (92)

The last term ⟨D⟩n is much more easy to handle. As a matter of fact, we already saw that for all n ≥ 0, jnkn = in. Thus, we deduce from (65),
(67), and (69) together with the elementary fact that In−1 + In = 1 that

⟨D⟩n =
n

∑
ℓ=1
(iℓ − (p − (1 − p)jℓ−1)((1 − p)kℓ−1 − piℓ−1))

=
n

∑
ℓ=1
((−1 + p2

+ (1 − p)2
)iℓ−1 − 2p(1 − p)kℓ−1)

=
n

∑
ℓ=1
(−2p(1 − p)(iℓ−1 + kℓ−1)),

which means that
⟨D⟩n = −2p(1 − p)(In−1 + Kn−1).
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Hence, (76) ensures that

lim
n→∞

1
n
⟨D⟩n = 0 a.s. (93)

Consequently, it follows from the conjunction of (77), (81), (90), (92), and (93) that

lim
n→∞

1
n
⟨ℳ ⟩n = Λ a.s., (94)

where the limiting matrix

Λ =
1

2 − p

⎛
⎜
⎜
⎜
⎜
⎝

(2 − p)σ2
+ pγ 2(ζ − p(μ +m)) 2p(θ + ρ)

2(ζ − p(μ +m))T 4p(1 − p) 0

2p(θ + ρ)T 0 4p(1 − p)

⎞
⎟
⎟
⎟
⎟
⎠

.

Moreover, we already saw that the increments of the martingale (ℳ n) are almost surely bounded, which ensures that Lindeberg’s condition
is satisfied. Whence, we obtain from Corollary 2.1.10 in (8) the asymptotic normality

1
√

n
ℳ n

L
Ð→𝒩 (0, Λ). (95)

Since p ≠ 0, we have from (70) and (71) that

Jn−1 =
NJ

n + np + 1 − jn

2 − p
, Kn−1 =

NK
n − pIn−1 + 1 − kn

p
.

Consequently, we obtain from (84) that
Sn − n(μ + pmp) =Mn +NJ

nmp +NK
n ρp +ℛ n, (96)

where the remainder ℛ n stands for ℛ n = In−1(θ − ρ) + (1 − jn)mp + (1 − kn)ρp with

mp =
1

2 − p
m and ρp =

1
p

ρ.

Hereafter, we shall once again make use of the Cramér–Wold theorem given, e.g., by Theorem 29.4 in (2). We have from (96) that for all
u ∈ R3,

1
√

n
uT
(Sn − n(μ + pmp)) =

1
√

n
vTℳ n +

1
√

n
uTℛ n, (97)

where the vector v ∈ R5 is given by

v =

⎛
⎜
⎜
⎜
⎜
⎝

u

mT
p u

ρT
p u

⎞
⎟
⎟
⎟
⎟
⎠

.

On the one hand, it follows from (95) that
1
√

n
vTℳ n

L
Ð→𝒩 (0, vTΛv). (98)

On the other hand, as In ∈ {0, 1}, (1 − jn) ∈ {0, 2}, and (1 − kn) ∈ {0, 2}, we clearly have for all u ∈ R3,

lim
n→∞

1
√

n
uTℛ n = 0 a.s. (99)

Consequently, we obtain from (97) together with (98) and (99) that

1
√

n
uT
(Sn − n(μ + pmp))

L
Ð→𝒩 (0, vTΛv). (100)
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It is not hard to see from (94) that

vTΛv =
1

2 − p
[uT
((2 − p)σ2

+ pγ)u + 2uT
(ζ − p(μ +m))mT

p u + 2uTmp(ζ − p(μ +m))Tu

+ 2puT
(θ + ρ)ρT

p u + 2puTρp(θ + ρ)Tu + 4p(1 − p)uTmpmT
p u + 4p(1 − p)uTρpρT

p u],

which leads to vTΛv = uTΓu, where

Γ =
1

2 − p
[(2 − p)σ2

+ pγ + 2(ζ − p(μ +m))mT
p +mp(ζ − p(μ +m))T

+ 2p(θ + ρ)ρT
p + 2pρp(θ + ρ)T

+ 4p(1 − p)mpmT
p + 4p(1 − p)ρpρT

p ],

= σ2
+

p
2 − p

γ +
2

(2 − p)2 ((ζ − pμ)mT
+m(ζ − pμ)T

) −
4p

(2 − p)3 mmT
+

2
2 − p

(θρT
+ ρθT

) +
4

p(2 − p)
ρρT .

Finally, we deduce from (100) together with the Cramér–Wold theorem that

1
√

n
(Sn − n(μ + pmp))

L
Ð→𝒩 (0, Γ), (101)

which achieves the proof of Theorem III.4. ◻

VI. CONCLUSION AND PERSPECTIVES
This paper explicitly gives a law of large numbers and a central limit theorem for random walks in the three-dimensional hexagonal

lattices of ice and graphite.
They allow to determine the long time behavior of a particle or a defect site moving on these lattices, provided that the jump probabilities

along each direction are explicitly known. This kind of considerations is frequent as this mode of propagation is often used to insert foreign
bodies into crystalline structures.

These results may be strengthened by determining a speed of convergence using classic results about multidimensional martingales.
Future developments could include the long time behavior of exclusion processes on such lattices in order to better understand under which
conditions several defect sites can coalesce to create a fragility in the structure. The study of the center of mass15 of such random walks or
elephant random walks1 in these lattices may be subjects of interest.
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